A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation
Abstract
:1. Introduction
- The universal image is first compressed before encryption to decrease the size of the image to be encrypted and increase the encryption efficiency.
- The chaotic sequences generated by TNN through iteration are fully utilized to provide pseudo-randomness to the encryption algorithm by combining it with the encryption algorithm.
- Due to the high randomness in the way DNA sequences combine, confusion and diffusion operations at the DNA level provide a strong randomization.
2. Preliminaries
2.1. Chaotic System
2.1.1. Chaotic Map
2.1.2. Randomness Test
2.2. Compression Sensing Technology
2.3. DNA-Triploid Mutation
3. Designed Algorithm
3.1. Encryption Algorithm
3.2. Decryption Algorithm
4. Experimental Results and Simulation Effects
5. Security Analysis
5.1. Performance of Compression
5.2. Analysis of Security Key
5.2.1. Key Space
5.2.2. Key Sensitivity
5.3. Attack Resistance Test
5.3.1. Differential Attack
5.3.2. Plaintext Attack
5.4. Statistical Characteristics Analysis
5.4.1. Histogram
5.4.2. Correlation
5.4.3. Information Entropy
5.4.4. Homogeneity Analysis
5.5. Robustness
5.5.1. Noise Attack
5.5.2. Shearing Attack
5.5.3. Speed Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Xu, B. A night pavement crack detection method based on image-to-image translation. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1737–1753. [Google Scholar] [CrossRef]
- Sun, F.; Lv, Z. A secure image encryption based on spatial surface chaotic system and AES algorithm. Multimed. Tools Appl. 2022, 81, 3959–3979. [Google Scholar] [CrossRef]
- Sahoo, A.; Mohanty, P.; Sethi, P.C. Image encryption using RSA algorithm. In Intelligent Systems: Proceedings of ICMIB 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 641–652. [Google Scholar]
- Zhang, X.; Wang, L.; Cui, G.; Niu, Y. Entropy-based block scrambling image encryption using DES structure and chaotic systems. Int. J. Opt. 2019, 2019, 3594534. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafique, A.; Khan, K.H.; Hazzazi, M.M. Efficient and secure image encryption using key substitution process with discrete wavelet transform. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101613. [Google Scholar] [CrossRef]
- Peng, X.; Zeng, Y. Image encryption application in a system for compounding self-excited and hidden attractors. Chaos Solitons Fractals 2020, 139, 110044. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Farhan, A.K. A new image encryption algorithm based on multi chaotic system. Iraqi J. Sci. 2022, 63, 324–337. [Google Scholar] [CrossRef]
- Abd, M.H.; Al-Suhail, G.A.; Tahir, F.R.; Ali Ali, A.M.; Abbood, H.A.; Dashtipour, K.; Jamal, S.S.; Ahmad, J. Synchronization of monostatic radar using a time-delayed chaos-based FM waveform. Remote Sens. 2022, 14, 1984. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y. A universal variable extension method for designing multiscroll/wing chaotic systems. IEEE Trans. Ind. Electron. 2023, 71, 7806–7818. [Google Scholar] [CrossRef]
- Han, Z.; Al-Barakati, A.A.; Jahanshahi, H.; Mou, J. A novel circuit based on memristor-memcapacitor with extreme multistability. Nonlinear Dyn. 2024, 112, 4863–4877. [Google Scholar] [CrossRef]
- Mou, J.; Han, Z.; Cao, Y.; Banerjee, S. Discrete Second-Order Memristor and Its Application to Chaotic Map. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 2824–2828. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Liu, H.; Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.; Wen, H. Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption. Fractal Fract. 2023, 7, 887. [Google Scholar] [CrossRef]
- Wang, C.; Tang, D.; Lin, H.; Yu, F.; Sun, Y. High-dimensional memristive neural network and its application in commercial data encryption communication. Expert Syst. Appl. 2024, 242, 122513. [Google Scholar] [CrossRef]
- Feng, W.; Zhao, X.; Zhang, J.; Qin, Z.; Zhang, J.; He, Y. Image encryption algorithm based on plane-level image filtering and discrete logarithmic transform. Mathematics 2022, 10, 2751. [Google Scholar] [CrossRef]
- Ma, Y.; Mou, J.; Jahanshahi, H.; Alkhateeb, A.F.; Bi, X. Design and DSP implementation of a hyperchaotic map with infinite coexisting attractors and intermittent chaos based on a novel locally active memcapacitor. Chaos Solitons Fractals 2023, 173, 113708. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Y.; Li, H.; Li, B. A chaos-enhanced fractional-order chaotic system with self-reproduction based on a memcapacitor and meminductor. Fractal Fract. 2023, 7, 582. [Google Scholar] [CrossRef]
- Ma, Y.; Mou, J.; Banerjee, S.; Miao, M. A quartic nonlinear flux-controlled memristor model and its application in chaotic system. Appl. Comput. Math. 2023, 22, 317–337. [Google Scholar]
- Wang, L.; Zhou, N.; Sun, B.; Cao, Y.; Mou, J. Novel Self-Embedding Holographic Watermarking Image Encryption Protection Scheme. Chin. Phys. B 2024, 33, 050501. [Google Scholar] [CrossRef]
- Sha, Y.; Mou, J.; Banerjee, S.; Zhang, Y. Exploiting flexible and secure cryptographic technique for multi-dimensional image based on graph data structure and three-input majority gate. IEEE Trans. Ind. Inform. 2023, 20, 3835–3846. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L. Chaos-based image encryption: Review, application, and challenges. Mathematics 2023, 11, 2585. [Google Scholar] [CrossRef]
- Tang, D.; Wang, C.; Lin, H.; Yu, F. Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive Hopfield neural network. Nonlinear Dyn. 2024, 112, 1511–1527. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Lin, H. Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application. Chaos Solitons Fractals 2024, 178, 114387. [Google Scholar] [CrossRef]
- Ren, L.; Qin, L.; Jahanshahi, H.; Mou, J. Infinitely Many Coexisting Attractors and Scrolls in a Fractional-Order Discrete Neuron Map. Int. J. Bifurc. Chaos 2023, 33, 2350197. [Google Scholar] [CrossRef]
- Han, Z.; Sun, B.; Banerjee, S.; Mou, J. Biological neuron modeling based on bifunctional memristor and its application in secure communication. Chaos Solitons Fractals 2024, 184, 115020. [Google Scholar] [CrossRef]
- Ma, T.; Mou, J.; Banerjee, S.; Cao, Y. Analysis of the functional behavior of fractional-order discrete neuron under electromagnetic radiation. Chaos Solitons Fractals 2023, 176, 114113. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Banerjee, S.; Cao, Y.; Mou, J. A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application. Chaos Solitons Fractals 2024, 179, 114466. [Google Scholar] [CrossRef]
- Mou, J.; Ma, T.; Banerjee, S.; Zhang, Y. A Novel Memcapacitive-Synapse Neuron: Bionic Modeling, Complex Dynamics Analysis and Circuit Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 1771–1780. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Z.; Hua, Z.; Chen, M.; Bao, H. Regime transition and multi-scroll hyperchaos in a discrete neuron model. Nonlinear Dyn. 2023, 111, 13499–13512. [Google Scholar] [CrossRef]
- Zhang, Z.; Mou, J.; Banerjee, S.; Cao, Y. A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row–column confusion and closed-loop bi-directional diffusion. Chin. Phys. B 2024, 33, 020503. [Google Scholar] [CrossRef]
- Alawida, M. A novel chaos-based permutation for image encryption. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101595. [Google Scholar] [CrossRef]
- Alexan, W.; Chen, Y.-L.; Por, L.Y.; Gabr, M. Hyperchaotic maps and the single neuron model: A novel framework for chaos-based image encryption. Symmetry 2023, 15, 1081. [Google Scholar] [CrossRef]
- Akraam, M.; Rashid, T.; Zafar, S. A Chaos-Based Image Encryption Scheme Is Proposed Using Multiple Chaotic Maps. Math. Probl. Eng. 2023, 2023, 2003724. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Zhang, Y.; Cao, Y. A new hyperchaotic map based on discrete memristor and meminductor: Dynamics analysis, encryption application, and DSP implementation. IEEE Trans. Ind. Electron. 2023, 71, 5094–5104. [Google Scholar] [CrossRef]
- Maazouz, M.; Toubal, A.; Bengherbia, B.; Houhou, O.; Batel, N. FPGA implementation of a chaos-based image encryption algorithm. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9926–9941. [Google Scholar] [CrossRef]
- Fetteha, M.A.; Sayed, W.S.; Said, L.A. A lightweight image encryption scheme using dna coding and chaos. Electronics 2023, 12, 4895. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Tan, W.; Li, L. A novel chaos-based image encryption scheme by using randomly DNA encode and plaintext related permutation. Appl. Sci. 2020, 10, 7469. [Google Scholar] [CrossRef]
- Zefreh, E.Z. An image encryption scheme based on a hybrid model of DNA computing, chaotic systems and hash functions. Multimed. Tools Appl. 2020, 79, 24993–25022. [Google Scholar] [CrossRef]
- Babaei, A.; Motameni, H.; Enayatifar, R. A new permutation-diffusion-based image encryption technique using cellular automata and DNA sequence. Optik 2020, 203, 164000. [Google Scholar] [CrossRef]
- Fetteha, M.A.; Sayed, W.S.; Said, L.A.; Radwan, A.G. Chaos-based image encryption using dna manipulation and a modified arnold transform. In Proceedings of the International Conference on Model and Data Engineering, Cairo, Egypt, 21–24 November 2022; pp. 3–15. [Google Scholar]
- Chen, X.; Mou, J.; Cao, Y.; Banerjee, S. Chaotic Multiple-Image Encryption Algorithm Based on Block Scrambling and Dynamic DNA Coding. Int. J. Bifurc. Chaos 2023, 33, 2350190. [Google Scholar] [CrossRef]
- Fan, W.; Li, T.; Wu, J.; Wu, J. Chaotic Color Image Encryption Based on Eight-Base DNA-Level Permutation and Diffusion. Entropy 2023, 25, 1268. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Zhao, X. Color image encryption algorithm based on bidirectional spiral transformation and DNA coding. Phys. Scr. 2023, 98, 025211. [Google Scholar] [CrossRef]
- Kumari, P.; Mondal, B. Lightweight image encryption algorithm using NLFSR and CBC mode. J. Supercomput. 2023, 79, 19452–19472. [Google Scholar] [CrossRef]
- Sha, Y.; Bo, S.; Yang, C.; Mou, J.; Jahanshahi, H. A chaotic image encryption scheme based on genetic central dogma and KMP method. Int. J. Bifurc. Chaos 2022, 32, 2250186. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Banerjee, S.; Zhang, Y. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour. IEEE Trans. Cybern. 2023, 53, 5037–5047. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; An, P.; Chen, Y.; Huang, X. An improved lossless image compression algorithm based on Huffman coding. Multimed. Tools Appl. 2022, 81, 4781–4795. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Jahanshahi, H.; Mou, J. Chaotic color multi-image compression-encryption/LSB data type steganography scheme for NFT transaction security. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101839. [Google Scholar] [CrossRef]
- Bao, P.; Xia, W.; Yang, K.; Chen, W.; Chen, M.; Xi, Y.; Niu, S.; Zhou, J.; Zhang, H.; Sun, H. Convolutional sparse coding for compressed sensing CT reconstruction. IEEE Trans. Med. Imaging 2019, 38, 2607–2619. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, 100, 90–93. [Google Scholar] [CrossRef]
- Buiakova, O.; Baker, H.; Scott, J.; Farbman, A.; Kream, R.; Grillo, M.; Franzen, L.; Richman, M.; Davis, L.; Abbondanzo, S. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 1996, 93, 9858–9863. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, Y. Image encryption based on compressed sensing and DNA encoding. Signal Process. Image Commun. 2021, 95, 116246. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, K.; Cao, C.; Zhu, C. A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt. Lasers Eng. 2019, 121, 203–214. [Google Scholar] [CrossRef]
- Chai, X.; Zheng, X.; Gan, Z.; Han, D.; Chen, Y. An image encryption algorithm based on chaotic system and compressive sensing. Signal Process. 2018, 148, 124–144. [Google Scholar] [CrossRef]
- Gan, Z.; Chai, X.; Bi, J.; Chen, X. Content-adaptive image compression and encryption via optimized compressive sensing with double random phase encoding driven by chaos. Complex Intell. Syst. 2022, 8, 2291–2309. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Yang, F.; An, X. A new discrete chaotic map application in image encryption algorithm. Phys. Scr. 2022, 97, 035202. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inf. Sci. 2021, 547, 1154–1169. [Google Scholar] [CrossRef]
- Zhu, L.; Song, H.; Zhang, X.; Yan, M.; Zhang, T.; Wang, X.; Xu, J. A robust meaningful image encryption scheme based on block compressive sensing and SVD embedding. Signal Process. 2020, 175, 107629. [Google Scholar] [CrossRef]
- Huang, X.; Dong, Y.; Ye, G.; Shi, Y. Meaningful image encryption algorithm based on compressive sensing and integer wavelet transform. Front. Comput. Sci. 2023, 17, 173804. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, X.; Jiang, Z.; Sun, K. Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation. Mathematics 2023, 11, 3373. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Song, M. Remote sensing image and multi-type image joint encryption based on NCCS. Nonlinear Dyn. 2023, 111, 14537–14563. [Google Scholar] [CrossRef]
- Du, Y.; Long, G.; Jiang, D.; Chai, X.; Han, J. Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing. Chin. Phys. B 2023, 32, 114203. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, J. Multiple-image encryption algorithm based on 3D-LWT and dynamic stereo S-box. Multimed. Tools Appl. 2024, 83, 16337–16362. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef]
- Chai, X.; Fu, J.; Gan, Z.; Lu, Y.; Zhang, Y. An image encryption scheme based on multi-objective optimization and block compressed sensing. Nonlinear Dyn. 2022, 108, 2671–2704. [Google Scholar] [CrossRef]
- Chai, X.; Wu, H.; Gan, Z.; Zhang, Y.; Chen, Y.; Nixon, K.W. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt. Lasers Eng. 2020, 124, 105837. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, Y.; Zhang, S.; Liu, J.; Wang, F. An image encryption scheme based on block compressed sensing and Chen’s system. Nonlinear Dyn. 2023, 111, 6791–6811. [Google Scholar] [CrossRef]
Items | Designed Algorithm | ||
---|---|---|---|
p-Value | PR | Pass/Fall (P/F) | |
Frequency | 0.020548 | 100% | P |
Block Frequency | 0.437274 | 99% | P |
Cumulative Sums | 0.071177 | 100% | P |
Runs | 0.021999 | 98% | P |
Longest Run | 0.678686 | 98% | P |
Rank | 0.759756 | 100% | P |
FFT | 0.911413 | 98% | P |
Nonoverlapping Template | 0.011791 | 100% | P |
Overlapping Template | 0.657933 | 99% | P |
Universal | 0.719747 | 97% | P |
Approximate Entropy | 0.798139 | 100% | P |
Random Excursions | 0.032923 | 100% | P |
Random Excursions Variant | 0.016717 | 97% | P |
Serial Linear Complexity | 0.779188 0.275709 | 98% 98% | P P |
Images | CRs | PSNR (dB) | ||
---|---|---|---|---|
R | G | B | ||
1.1 | 0.4 | 26.8518 | 26.9826 | 27.6398 |
2.2 | 0.4 | 28.4870 | 28.2920 | 28.4591 |
3.1 | 0.4 | 27.7327 | 28.8674 | 28.9207 |
1.1 | 0.6 | 27.0836 | 27.9453 | 28.7639 |
2.2 | 0.6 | 29.7938 | 29.0476 | 29.9328 |
3.1 | 0.6 | 30.0084 | 30.8790 | 30.6279 |
Algorithm | Sizes | CRs | PSNRaver |
---|---|---|---|
Reference [51] | 512 × 512 | 0.5 | 23.3608 |
Proposed | 512 × 512 | 0.5 | 28.9032 |
Reference [52] | 256 × 256 | 0.5 | 28.0714 |
Proposed | 256 × 256 | 0.5 | 28.6956 |
Reference [53] | 256 × 256 | 0.75 | 29.5600 |
Proposed | 256 × 256 | 0.75 | 30.7205 |
Algorithm | Sizes | CRs | Time (s) |
---|---|---|---|
Reference [45] | 256 × 256 × 111 | 0.5 | 186.91 |
Proposed | 256 × 256 × 111 | 0.5 | 21.0424 |
Reference [46] | 3840 × 2160 | 0.7236 | 2 |
Proposed | 3840 × 2160 | 0.7236 | 1.855 |
Parameters | Key Space |
---|---|
b, g | 1015 |
a, c, d, y0, hc, hd | 1016 |
x0, ha, hb | 1017 |
Total key space | 10177 ≈ 2587 |
Algorithms | Reference [55] | Reference [56] | Reference [57] | Reference [58] | Proposed |
---|---|---|---|---|---|
Key space | 2256 | 2256 | 2197 | 2154 | 2587 |
Images | CR | NPCR (%) | ||
---|---|---|---|---|
R | G | B | ||
1.1 | 0.6 | 99.6099 | 99.6174 | 99.6732 |
1.2 | 0.6 | 99.6505 | 99.6084 | 99.6091 |
2.1 | 0.6 | 99.6103 | 99.6092 | 99.6100 |
2.2 | 0.6 | 99.6235 | 99.6106 | 99.6083 |
3.1 | 0.6 | 99.6253 | 99.6284 | 99.6090 |
3.2 | 0.6 | 99.6098 | 99.6134 | 99.6101 |
4.1 | 0.6 | 99.6098 | ||
4.2 | 0.6 | 99.6102 |
Images | Sizes | Cipher Images (CR = 0.6) | |||||
---|---|---|---|---|---|---|---|
NPCR (%) | UACI (%) | ||||||
R | G | B | R | G | B | ||
1.1 | 256 × 256 × 3 | 99.6094 | 99.6100 | 99.6187 | 33.4512 | 33.4969 | 33.4661 |
1.2 | 256 × 256 × 3 | 99.6151 | 99.6131 | 99.6098 | 33.5268 | 33.4695 | 33.5211 |
2.1 | 512 × 512 × 3 | 99.6167 | 99.6118 | 99.6135 | 33.4630 | 33.4661 | 33.5041 |
2.2 | 512 × 512 × 3 | 99.6094 | 99.6103 | 99.6102 | 33.4661 | 33.4947 | 33.4660 |
3.1 | 1024 × 1024 × 3 | 99.6092 | 99.6098 | 99.6117 | 33.4661 | 33.4651 | 33.4602 |
3.2 | 1024 × 1024 × 3 | 99.6099 | 99.6166 | 99.6099 | 33.4833 | 33.4601 | 33.4631 |
4.1 | 256 × 256 | 99.6147 | 33.4980 | ||||
4.2 | 512 × 512 | 99.6132 | 33.4699 |
Algorithms | Sizes | CR | NPCR (%) | UACI (%) |
---|---|---|---|---|
Reference [59] | 512 × 512 | 0.75 | 99.6174 | 33.4570 |
Proposed | 512 × 512 | 0.75 | 99.6174 | 33.4938 |
Reference [47] | 256 × 256 × 3 | 0.6 | 99.6087 | 33.4815 |
Proposed | 256 × 256 × 3 | 0.6 | 99.6127 | 33.6553 |
Theoretical value | 99.6094 | 33.4635 |
Images | Plaintext Images | Cipher Images (CR = 0.6) | |||||
---|---|---|---|---|---|---|---|
H | V | D | H | V | D | ||
1.1 | R | 0.9603 | 0.9724 | 0.9413 | −0.0079 | 0.0007 | −0.0160 |
G | 0.9659 | 0.9701 | 0.9492 | −0.0065 | 0.0042 | −0.0021 | |
B | 0.9565 | 0.9570 | 0.9345 | −0.0159 | 0.0031 | 0.0096 | |
1.2 | R | 0.9917 | 0.9809 | 0.9752 | 0.0046 | −0.0209 | −0.0235 |
G | 0.9867 | 0.9652 | 0.9532 | 0.0034 | −0.0183 | −0.0284 | |
B | 0.9727 | 0.9555 | 0.9359 | 0.0095 | −0.0228 | −0.0138 | |
2.1 | R | 0.8741 | 0.9295 | 0.8566 | −0.0224 | −0.0059 | −0.0039 |
G | 0.7671 | 0.8646 | 0.7379 | 0.0020 | −0.0042 | 0.0326 | |
B | 0.8870 | 0.9037 | 0.8474 | 0.0106 | 0.0177 | 0.0185 | |
2.2 | R | 0.9637 | 0.9534 | 0.9308 | 0.0286 | −0.0050 | 0.0034 |
G | 0.9494 | 0.9457 | 0.9036 | 0.0065 | −0.0026 | 0.0266 | |
B | 0.9726 | 0.9740 | 0.9479 | 0.0077 | 0.0115 | −0.0211 | |
3.1 | R | 0.9316 | 0.9258 | 0.9044 | −0.0203 | −0.0230 | −0.0151 |
G | 0.8781 | 0.8792 | 0.8491 | −0.0074 | 0.0141 | 0.0218 | |
B | 0.7981 | 0.8006 | 0.7407 | 0.0263 | 0.0002 | 0.0274 | |
3.2 | R | 0.9244 | 0.9241 | 0.9020 | −0.0116 | −0.0225 | 0.0022 |
G | 0.9175 | 0.9194 | 0.8931 | 0.0092 | 0.0147 | 0.0399 | |
B | 0.9058 | 0.9050 | 0.8860 | 0.0007 | 0.0068 | 0.0029 | |
4.1 | 0.9746 | 0.9525 | 0.9358 | −0.0015 | −0.0057 | −0.0089 | |
4.2 | 0.8610 | 0.9317 | 0.8609 | 0.0060 | −0.0148 | −0.0002 | |
All black | −0.0009 | 0.0174 | 0.0044 | ||||
All white | −0.0061 | 0.0010 | −0.0053 |
Images (Size) | Cipher Images (CR = 0.6) | ||
---|---|---|---|
R | G | B | |
1.1 (153.6 × 256 × 3) | 7.9711 | 7.9812 | 7.9860 |
1.2 (153.6 × 256 × 3) | 7.9922 | 7.9921 | 7.9923 |
2.1 (307.2 × 512 × 3) | 7.9979 | 7.9978 | 7.9980 |
2.2 (307.2 × 512 × 3) | 7.9981 | 7.9981 | 7.9981 |
3.1 (614.4 × 1024 × 3) | 7.9887 | 7.9840 | 7.9898 |
3.2 (614.4 × 1024 × 3) | 7.9995 | 7.9995 | 7.9995 |
4.1 (153.6 × 256) | 7.9915 | ||
4.2 (153.6 × 256) | 7.9981 | ||
All black (153.6 × 256) | 7.9911 | ||
All white (153.6 × 256) | 7.9922 |
Image | Original Images | Cipher Images | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
1.1 | 0.9109 | 0.9246 | 0.9018 | 0.3883 | 0.3914 | 0.3890 |
1.2 | 0.9124 | 0.9060 | 0.9135 | 0.3925 | 0.3890 | 0.3901 |
2.1 | 0.7848 | 0.7598 | 0.7512 | 0.3906 | 0.3897 | 0.3894 |
2.2 | 0.8881 | 0.8803 | 0.8923 | 0.3909 | 0.3904 | 0.3896 |
3.1 | 0.8629 | 0.9378 | 0.9812 | 0.3892 | 0.3891 | 0.3892 |
3.2 | 0.7789 | 0.7841 | 0.8506 | 0.3894 | 0.3892 | 0.3902 |
4.1 | 0.9131 | 0.3888 | ||||
4.2 | 0.9048 | 0.3900 | ||||
All black | 1 | 0.3919 | ||||
All white | 1 | 0.3898 |
Image | PSNR (dB) SPN = 0.01 | PSNR (dB) SPN = 0.05 | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
1.1 | 29.0203 | 29.3532 | 29.3294 | 28.9485 | 29.1297 | 29.2689 |
1.2 | 29.5724 | 29.6824 | 29.5546 | 29.4373 | 29.2485 | 29.4983 |
2.1 | 29.5873 | 29.4342 | 30.8453 | 29.0459 | 29.8942 | 29.9984 |
2.2 | 28.9384 | 29.8494 | 29.7484 | 29.3632 | 28.6482 | 28.4721 |
3.1 | 29.0232 | 28.8474 | 30.0018 | 28.0394 | 28.4824 | 29.0193 |
3.2 | 28.9384 | 29.4372 | 30.4382 | 28.3942 | 29.0001 | 29.2019 |
4.1 | 28.7533 | 27.8920 | ||||
4.2 | 28.7593 | 28.2001 |
Encryption | Timeaver (s) | Speed (kbits/s) | Decryption | Timeaver (s) | Speed (kbits/s) |
---|---|---|---|---|---|
CS | 0.211 | 931.791 | Reconstruction | 15.492 | 12.691 |
Confusion | 0.245 | 802.482 | Inv-confusion | 0.206 | 954.408 |
Diffusion | 0.107 | 1837.458 | Inv-diffusion | 0.148 | 1328.432 |
Total | 0.563 | 349.215 | Total | 15.846 | 12.407 |
Chaos iteration | 0.051 | 3855.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Tan, L.; Xu, X.; Li, B. A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation. Mathematics 2024, 12, 1990. https://doi.org/10.3390/math12131990
Cao Y, Tan L, Xu X, Li B. A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation. Mathematics. 2024; 12(13):1990. https://doi.org/10.3390/math12131990
Chicago/Turabian StyleCao, Yinghong, Linlin Tan, Xianying Xu, and Bo Li. 2024. "A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation" Mathematics 12, no. 13: 1990. https://doi.org/10.3390/math12131990
APA StyleCao, Y., Tan, L., Xu, X., & Li, B. (2024). A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation. Mathematics, 12(13), 1990. https://doi.org/10.3390/math12131990