Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design
Abstract
:1. Introduction
1.1. Paper Contribution
1.2. Paper Organization
2. The Functional Framework
2.1. Notation
2.2. Generality on the Model
2.3. Local Stationarity
- (i)
- is strictly stationary.
- (ii)
- It holds that
2.4. Sampling Design
2.5. Mixing Condition
2.6. Estimation Procedures
2.6.1. Small Ball Probability
2.6.2. VC-Type Classes of Functions
2.7. Conditions and Comments
- (M1)
- The stochastic process , taking values in the Hilbert space , exhibits local stationarity. Therefore, for each time point , there exists a strictly stationary process . This process satisfies, for an arbitrary norm on ,
- (M2)
- For, consider as a ball centered at with radius h. Let be positive constants, and for all , define
- (M3)
- Let and and . Assume
- (M4)
- is bounded by some constant from above and by some constant from below, that is, for all , and θ.
- (M5)
- is Lipschitz continuous with respect to .
- (M6)
- as .
- (M7)
- is Lipschitz, and it satisfy
- (KB1)
- The kernel is non-negative, bounded by , and has support in such that and . Moreover, the derivative exists on and satisfies for two real constants .
- (KB2)
- The kernel is bounded and has compact support . Moreover,
- (KB3)
- The bandwidth h converges to zero at least at a polynomial rate; that is, there exists a small such that for some constant .
- (S1)
- For any with , exists and is continuous on .
- (S2)
- for some and small .
- (B1)
- Let and be two sequences of positive numbers such that , and , or
- (B2)
- We have with for some .
- (B3)
- We have
- (B4)
- We have .
- (R1)
- and ,
- (R2)
- for some and and ,
- (R3)
- , where p is defined in the sequel.
- (E1)
- For , it holds that and
- (E2)
- The β-mixing coefficients of the array satisfy with as
- (C1)
- The class of functions is bounded, and its envelope function satisfies, for some
- (C2)
- The class of functions is unbounded, and its envelope function satisfies, for some
- (C3)
- The metric entropy of the class satisfies, for some
Comments on the Assumptions
- (C4)
- , is a bounded and compactly supported measurable function that belongs to the linear span (the set of finite linear combinations) of functions satisfying the following property: the subgraph of , can be represented as a finite number of Boolean operations among sets of the form
- (C4)’
- We denote by a non-negative continuous function, increasing on , and such that, for some , ultimately as :
- (i)
- for some ;
- (ii)
- for some .
3. Uniform Convergence Rates for Kernel Estimators
3.1. Hoeffding’s Decomposition
- The expectation of
- For all the position of the argument, construct the function such that
- Define
3.2. Strong Uniform Convergence Rate
- Step 1
- For each , where represents a set of J ’seed-coefficients’, construct the initial functional direction as
- Step 2
- For each from Step 1 satisfying , where denotes a fixed value in the domain of , compute and form .
- Step 3
- Define as the collection of vectors obtained in Step 2. Consequently, the final set of permissible functional directions is represented as
4. Weak Convergence for Kernel Estimators
5. Applications
5.1. Metric Learning
5.2. Ranking Problems
5.3. Multipartite Ranking
5.4. Discrimination
5.5. Kendall Rank Correlation Coefficient
5.6. Set Indexed Conditional U-Statistics
5.7. Generalized U-Statistics
6. Extension to the Censored Case
- (A.1)
- , where , and is a pointwise measurable class of real measurable functions defined on and of VC type.
- (A.2)
- The class of functions has a measurable and uniformly bounded envelope function such that
6.1. Conditional U-Statistics for Left Truncated and Right Censored Data
7. The Bandwidth Selection Criterion
8. Concluding Remarks
9. Mathematical Developments
- A.1.
- Preliminaries
- To attain our result, we will proceed through the following two steps.
- Step 1 (Reduction to independence). Recall
- Step 2: Keep in mind our intention to address
- Furthermore, for each , let represent a sequence of independent random vectors in under , such that
- (I):
- The same type of blocks but not the same block:
- (II):
- The same block:
- (III):
- Different types of blocks:To avoid redundancy, we can directly observe that
- (IV):
- Blocks of different types:We have to prove that
- We haveTherefore, the proof of the lemma is concluded. □The final stage in the proof of Proposition 1 involves employing Lemma 1 to establish the convergence of the nonlinear term to zero. □
- Step 1.
- Step 2.
- Step 3.
- Let .
- Step 4.
- Step 1. is evidently a direct consequence of Proposition 1 when considering . The same holds for Step 2., even if we replace with and then apply Proposition 1. Now, we proceed to Step 4. Note that for , the aforementioned proposition has already demonstrated that
- 1.
- converges to a Gaussian process.
- 2.
- The remainder part does not matter much, in the sense that
10. Technical Results
- (KD1)
- (KB2) in Assumption 2 holds.
- (KD2)
- For any with , exist and continuous on .Define
10.1. Examples of Classes of Functions
10.2. Examples of U-kernels
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Monographs on Statistics and Applied Probability Series; Chapman & Hall: London, UK, 1986; p. x+175p. [Google Scholar]
- Nadaraya, E.A. Nonparametric Estimation of Probability Densities and Regression Curves; Mathematics and its Applications Series; Kotz, S., Translator; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1989; Volume 20, p. x+213. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Monographs on Statistics and Applied Probability Series; Chapman & Hall: London, UK, 1995; Volume 60, p. xii+212. [Google Scholar]
- Eggermont, P.P.B.; LaRiccia, V.N. Maximum Penalized Likelihood Estimation; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume I, p. xviii+510. [Google Scholar]
- Ripley, B.D. Spatial statistics: Developments 1980–1983. Internat. Statist. Rev. 1984, 52, 141–150. [Google Scholar] [CrossRef]
- Rosenblatt, M. Stationary Sequences and Random Fields; Birkhäuser Boston, Inc.: Boston, MA, USA, 1985; p. 258. [Google Scholar] [CrossRef]
- Guyon, X. Random Fields on a Network. Modeling, Statistics, and Applications; Probability and its Applications Series; Ludeña, C., Translator; Springer: New York, NY, USA, 1995; p. xii+255. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data, revised ed.; Wiley Classics Library, John Wiley & Sons, Inc.: New York, NY, USA, 2015; p. xx+900. [Google Scholar]
- Tran, L.T. Kernel density estimation on random fields. J. Multivar. Anal. 1990, 34, 37–53. [Google Scholar] [CrossRef]
- Tran, L.T.; Yakowitz, S. Nearest neighbor estimators for random fields. J. Multivar. Anal. 1993, 44, 23–46. [Google Scholar] [CrossRef]
- Biau, G.; Cadre, B. Nonparametric spatial prediction. Stat. Inference Stoch. Process. 2004, 7, 327–349. [Google Scholar] [CrossRef]
- Ndiaye, M.; Dabo-Niang, S.; Ngom, P. Nonparametric prediction for spatial dependent functional data under fixed sampling design. Rev. Colomb. Estadíst. 2022, 45, 391–428. [Google Scholar] [CrossRef]
- Soukarieh, I.; Bouzebda, S. Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics. 2023, 11, 3745. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. The Local Linear Functional kNN Estimator of the Conditional Expectile: Uniform Consistency in Number of Neighbors. Metrika 2024, 34, 1–29. [Google Scholar] [CrossRef]
- Stute, W. Almost sure representations of the product-limit estimator for truncated data. Ann. Statist. 1993, 21, 146–156. [Google Scholar] [CrossRef]
- Arcones, M.A.; Wang, Y. Some new tests for normality based on U-processes. Statist. Probab. Lett. 2006, 76, 69–82. [Google Scholar] [CrossRef]
- Schick, A.; Wang, Y.; Wefelmeyer, W. Tests for normality based on density estimators of convolutions. Statist. Probab. Lett. 2011, 81, 337–343. [Google Scholar] [CrossRef]
- Joly, E.; Lugosi, G. Robust estimation of U-statistics. Stoch. Process. Appl. 2016, 126, 3760–3773. [Google Scholar] [CrossRef]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics; Wiley Series in Probability and Mathematical Statistics; John Wiley & Sons: New York, NY, USA, 1980; p. xiv+371. [Google Scholar]
- Koroljuk, V.S.; Borovskich, Y.V. Theory of U-Statistics; Mathematics and its Applications Series; Malyshev, P.V.; Malyshev, D.V., Translators; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1994; Volume 273, p. x+552. [Google Scholar]
- de la Peña, V.H.; Giné, E. Randomly stopped processes. U-statistics and processes. Martingales and beyond. In Decoupling. From Dependence to Independence; Probability and its Applications Series; Springer: New York, NY, USA, 1999; p. xvi+392. [Google Scholar] [CrossRef]
- Frees, E.W. Infinite order U-statistics. Scand. J. Statist. 1989, 16, 29–45. [Google Scholar]
- Heilig, C.; Nolan, D. Limit theorems for the infinite-degree U-process. Statist. Sin. 2001, 11, 289–302. [Google Scholar]
- Song, Y.; Chen, X.; Kato, K. Approximating high-dimensional infinite-order U-statistics: Statistical and computational guarantees. Electron. J. Stat. 2019, 13, 4794–4848. [Google Scholar] [CrossRef]
- Faivishevsky, L.; Goldberger, J. ICA based on a Smooth Estimation of the Differential Entropy. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; Curran Associates, Inc.: New York, NY, USA, 2008; Volume 21. [Google Scholar]
- Liu, Q.; Lee, J.; Jordan, M. A Kernelized Stein Discrepancy for Goodness-of-fit Tests. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 276–284. [Google Scholar]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer Series in Statistics; Springer: New York, NY, USA, 2002; p. x+190. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer Series in Statistics; Springer: New York, NY, USA, 2006; p. xx+258. [Google Scholar]
- Araujo, A.; Giné, E. The Central Limit Theorem for Real and Banach Valued Random Variables; Wiley Series in Probability and Mathematical Statistics; John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia, 1980; p. xiv+233. [Google Scholar]
- Gasser, T.; Hall, P.; Presnell, B. Nonparametric estimation of the mode of a distribution of random curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 1998, 60, 681–691. [Google Scholar] [CrossRef]
- Bosq, D. Linear Processes in Function Spaces: Theory and Applications; Lecture Notes in Statistics Series; Springer: New York, NY, USA, 2000; Volume 149, p. xiv+283. [Google Scholar] [CrossRef]
- Horváth, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer Series in Statistics; Springer: New York, NY, USA, 2012; p. xiv+422. [Google Scholar] [CrossRef]
- Ling, N.; Vieu, P. Nonparametric modelling for functional data: Selected survey and tracks for future. Statistics 2018, 52, 934–949. [Google Scholar] [CrossRef]
- Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P. Rate of uniform consistency for nonparametric estimates with functional variables. J. Statist. Plann. Inference 2010, 140, 335–352. [Google Scholar] [CrossRef]
- Attouch, M.; Laksaci, A.; Rafaa, F. On the local linear estimate for functional regression: Uniform in bandwidth consistency. Comm. Statist. Theory Methods 2019, 48, 1836–1853. [Google Scholar] [CrossRef]
- Ling, N.; Meng, S.; Vieu, P. Uniform consistency rate of kNN regression estimation for functional time series data. J. Nonparametr. Stat. 2019, 31, 451–468. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A. Uniform in number of neighbors consistency and weak convergence of kNN empirical conditional processes and kNN conditional U-processes involving functional mixing data. AIMS Math. 2024, 9, 4427–4550. [Google Scholar] [CrossRef]
- Didi, S.; Al Harby, A.; Bouzebda, S. Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics 2022, 10, 3433. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Nonparametric estimation of expectile regression in functional dependent data. J. Nonparametr. Stat. 2022, 34, 250–281. [Google Scholar] [CrossRef]
- Stute, W. Conditional U-statistics. Ann. Probab. 1991, 19, 812–825. [Google Scholar] [CrossRef]
- Bauer, H. Probability Theory and Elements of Measure Theory, 2nd ed.; Probability and Mathematical Statistics Series; Academic Press: London, UK; New York, NY, USA, 1981; p. xiii+460. [Google Scholar]
- Sen, A. Uniform strong consistency rates for conditional U-statistics. Sankhyā Ser. A 1994, 56, 179–194. [Google Scholar]
- Prakasa Rao, B.L.S.; Sen, A. Limit distributions of conditional U-statistics. J. Theoret. Probab. 1995, 8, 261–301. [Google Scholar] [CrossRef]
- Harel, M.; Puri, M.L. Conditional U-statistics for dependent random variables. J. Multivar. Anal. 1996, 57, 84–100. [Google Scholar] [CrossRef]
- Stute, W. Symmetrized NN-conditional U-statistics. In Research Developments in Probability and Statistics; VSP: Utrecht, The Netherlands, 1996; pp. 231–237. [Google Scholar]
- Fu, K.A. An application of U-statistics to nonparametric functional data analysis. Comm. Statist. Theory Methods 2012, 41, 1532–1542. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data. J. Nonparametr. Stat. 2020, 32, 452–509. [Google Scholar] [CrossRef]
- Goia, A.; Vieu, P. An introduction to recent advances in high/infinite dimensional statistics. J. Multivar. Anal. 2016, 146, 1–6. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data. Stat. Inference Stoch. Process. 2023, 26, 33–88. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Müller, H.G. Single index Fréchet regression. Ann. Statist. 2023, 51, 1770–1798. [Google Scholar] [CrossRef]
- Stute, W.; Zhu, L.X. Nonparametric checks for single-index models. Ann. Statist. 2005, 33, 1048–1083. [Google Scholar] [CrossRef]
- Gu, L.; Yang, L. Oracally efficient estimation for single-index link function with simultaneous confidence band. Electron. J. Stat. 2015, 9, 1540–1561. [Google Scholar] [CrossRef]
- Ferraty, F.; Peuch, A.; Vieu, P. Modèle à indice fonctionnel simple. Comptes Rendus Math. Acad. Sci. Paris 2003, 336, 1025–1028. [Google Scholar] [CrossRef]
- Ait-Saïdi, A.; Ferraty, F.; Kassa, R.; Vieu, P. Cross-validated estimations in the single-functional index model. Statistics 2008, 42, 475–494. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Z.; Zhang, J. Functional single-index composite quantile regression. Metrika 2023, 86, 595–603. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, L.; Cao, J. Estimating functional single index models with compact support. Environmetrics 2023, 34, e2784. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, R.; Liu, Y.; Ding, H. Robust estimation for a general functional single index model via quantile regression. J. Korean Statist. Soc. 2022, 51, 1041–1070. [Google Scholar] [CrossRef]
- Tang, Q.; Kong, L.; Rupper, D.; Karunamuni, R.J. Partial functional partially linear single-index models. Statist. Sin. 2021, 31, 107–133. [Google Scholar] [CrossRef]
- Ling, N.; Cheng, L.; Vieu, P.; Ding, H. Missing responses at random in functional single index model for time series data. Statist. Pap. 2022, 63, 665–692. [Google Scholar] [CrossRef]
- Ling, N.; Cheng, L.; Vieu, P. Single functional index model under responses MAR and dependent observations. In Functional and High-Dimensional Statistics and Related Fields; Contributions to Statistics Series; Springer: Cham, Switzerland, 2020; pp. 161–168. [Google Scholar] [CrossRef]
- Feng, S.; Tian, P.; Hu, Y.; Li, G. Estimation in functional single-index varying coefficient model. J. Statist. Plann. Inference 2021, 214, 62–75. [Google Scholar] [CrossRef]
- Novo, S.; Aneiros, G.; Vieu, P. Automatic and location-adaptive estimation in functional single-index regression. J. Nonparametr. Stat. 2019, 31, 364–392. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.; Zhu, H. A functional varying-coefficient single-index model for functional response data. J. Amer. Statist. Assoc. 2017, 112, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Attaoui, S.; Ling, N. Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications. Metrika 2016, 79, 485–511. [Google Scholar] [CrossRef]
- Chen, D.; Hall, P.; Müller, H.G. Single and multiple index functional regression models with nonparametric link. Ann. Statist. 2011, 39, 1720–1747. [Google Scholar] [CrossRef]
- Fuglstad, G.A.; Simpson, D.; Lindgren, F.; Rue, H.v. Does non-stationary spatial data always require non-stationary random fields? Spat. Stat. 2015, 14, 505–531. [Google Scholar] [CrossRef]
- Steel, M.F.J.; Fuentes, M. Non-Gaussian and nonparametric models for continuous spatial data. In Handbook of Spatial Statistics; CRC Press: Boca Raton, FL, USA, 2010; pp. 149–167. [Google Scholar] [CrossRef]
- Chu, T.; Liu, J.; Wang, H.; Zhu, J. Spatio-temporal expanding distance asymptotic framework for locally stationary processes. Sankhya A 2022, 84, 689–713. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yajima, Y. Locally stationary spatio-temporal processes. Jpn. J. Stat. Data Sci. 2018, 1, 41–57. [Google Scholar] [CrossRef]
- Bitter, A.; Stelzer, R.; Ströh, B. Continuous-time locally stationary time series models. Adv. Appl. Probab. 2023, 55, 965–998. [Google Scholar] [CrossRef]
- Kurisu, D. Nonparametric regression for locally stationary functional time series. Electron. J. Stat. 2022, 16, 3973–3995. [Google Scholar] [CrossRef]
- Pezo, D. Local Stationarity for Spatial Data. PhD Thesis, Technische Universtat Kaiserlautern, Kaiserslautern, Germany, 2018. [Google Scholar]
- Kurisu, D. Nonparametric regression for locally stationary random fields under stochastic sampling design. Bernoulli 2022, 28, 1250–1275. [Google Scholar] [CrossRef]
- Dahlhaus, R. Fitting time series models to nonstationary processes. Ann. Statist. 1997, 25, 1–37. [Google Scholar] [CrossRef]
- Dahlhaus, R.; Richter, S. Adaptation for nonparametric estimators of locally stationary processes. Econom. Theory 2023, 39, 1123–1153. [Google Scholar] [CrossRef]
- Dahlhaus, R.; Richter, S.; Wu, W.B. Towards a general theory for nonlinear locally stationary processes. Bernoulli 2019, 25, 1013–1044. [Google Scholar] [CrossRef]
- Arcones, M.A.; Yu, B. Central limit theorems for empirical and U-processes of stationary mixing sequences. J. Theoret. Probab. 1994, 7, 47–71. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Central Limit Theorems for Conditional Empirical and Conditional U-Processes of Stationary Mixing Sequences. Math. Methods Statist. 2019, 28, 169–207. [Google Scholar] [CrossRef]
- Masry, E. Nonparametric regression estimation for dependent functional data: Asymptotic normality. Stoch. Process. Appl. 2005, 115, 155–177. [Google Scholar] [CrossRef]
- Daisuke Kurisu, K.K.; Shao, X. Gaussian Approximation and Spatially Dependent Wild Bootstrap for High-Dimensional Spatial Data. J. Amer. Statist. Assoc. 2023, 1–13. [Google Scholar] [CrossRef]
- Elmezouar, Z.C.; Alshahrani, F.; Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Strong consistency rate in functional single index expectile model for spatial data. AIMS Math. 2024, 9, 5550–5581. [Google Scholar] [CrossRef]
- Kurisu, D.; Fukami, R.; Koike, Y. Adaptive deep learning for nonlinear time series models. arXiv 2023, arXiv:2207.02546. [Google Scholar]
- Vogt, M. Nonparametric regression for locally stationary time series. Ann. Statist. 2012, 40, 2601–2633. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Additive regression model for stationary and ergodic continuous time processes. Comm. Statist. Theory Methods 2017, 46, 2454–2493. [Google Scholar] [CrossRef]
- Dahlhaus, R.; Subba Rao, S. Statistical inference for time-varying ARCH processes. Ann. Statist. 2006, 34, 1075–1114. [Google Scholar] [CrossRef]
- van Delft, A.; Eichler, M. Locally stationary functional time series. Electron. J. Stat. 2018, 12, 107–170. [Google Scholar] [CrossRef]
- Hall, P.; Patil, P. Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Relat. Fields 1994, 99, 399–424. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yajima, Y. Fourier analysis of irregularly spaced data on Rd. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 191–217. [Google Scholar] [CrossRef]
- Lahiri, S.N. Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhyā 2003, 65, 356–388. [Google Scholar]
- Chen, M.; Chen, W.; Yang, R. Double moving extremes ranked set sampling design. Acta Math. Appl. Sin. Engl. Ser. 2024, 40, 75–90. [Google Scholar] [CrossRef]
- Lahiri, S.N. Resampling Methods for Dependent Data; Springer Series in Statistics; Springer: New York, NY, USA, 2003; p. xiv+374. [Google Scholar] [CrossRef]
- Volkonskiĭ, V.A.; Rozanov, Y.A. Some limit theorems for random functions. I. Theor. Probab. Appl. 1959, 4, 178–197. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Ibragimov, I.A.; Solev, V.N. A condition for the regularity of a Gaussian stationary process. Dokl. Akad. Nauk SSSR 1969, 185, 509–512. [Google Scholar]
- Bradley, R.C. A caution on mixing conditions for random fields. Statist. Probab. Lett. 1989, 8, 489–491. [Google Scholar] [CrossRef]
- Bradley, R.C. Some examples of mixing random fields. Rocky Mt. J. Math. 1993, 23, 495–519. [Google Scholar] [CrossRef]
- Doukhan, P. Mixing: Properties and Examples; Lecture Notes in Statistics Series; Springer: New York, NY, USA, 1994; Volume 85, p. xii+142. [Google Scholar] [CrossRef]
- Dedecker, J.; Doukhan, P.; Lang, G.; León R., J.R.; Louhichi, S.; Prieur, C. Weak Dependence: With Examples and Applications; Lecture Notes in Statistics Series; Springer: New York, NY, USA, 2007; Volume 190, p. xiv+318. [Google Scholar]
- Lahiri, S.N.; Zhu, J. Resampling methods for spatial regression models under a class of stochastic designs. Ann. Statist. 2006, 34, 1774–1813. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Lahiri, S.N.; Nordman, D.J. A frequency domain empirical likelihood method for irregularly spaced spatial data. Ann. Statist. 2015, 43, 519–545. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Matsuda, Y. Continuous auto-regressive moving average random fields on Rn. J. R. Stat. Soc. Ser. B. Stat. Methodol. 2017, 79, 833–857. [Google Scholar] [CrossRef]
- Berger, D. Lévy driven CARMA generalized processes and stochastic partial differential equations. Stoch. Process. Appl. 2020, 130, 5865–5887. [Google Scholar] [CrossRef]
- Bouzebda, S. Weak Convergence of the Conditional Single Index U-statistics for Locally Stationary Functional Time Series. AIMS Math. 2024, 9, 14807–14898. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Tihomirov, V.M. ε-entropy and ε-capacity of sets in functional space. Amer. Math. Soc. Transl. 1961, 17, 277–364. [Google Scholar]
- Dudley, R.M. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1967, 1, 290–330. [Google Scholar] [CrossRef]
- Nolan, D.; Pollard, D. U-processes: Rates of convergence. Ann. Statist. 1987, 15, 780–799. [Google Scholar] [CrossRef]
- Dudley, R.M. Uniform Central LimitDudley2014ms, 2nd ed.; Cambridge Studies in Advanced Mathematics Series; Cambridge University Press: New York, NY, USA, 2014; Volume 142, p. xii+472. [Google Scholar]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes: With Applications to Statistics; Springer Series in Statistics; Springer: New York, NY, USA, 1996; p. xvi+508. [Google Scholar] [CrossRef]
- Kosorok, M.R. Introduction to Empirical Processes and Semiparametric Inference; Springer Series in Statistics; Springer: New York, NY, USA, 2008; p. xiv+483. [Google Scholar] [CrossRef]
- Deheuvels, P. One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika 2011, 47, 855–865. [Google Scholar]
- Pollard, D. Convergence of Stochastic Processes; Springer Series in Statistics; Springer: New York, NY, USA, 1984; p. xiv+215. [Google Scholar] [CrossRef]
- Bouzebda, S. On the strong approximation of bootstrapped empirical copula processes with applications. Math. Methods Statist. 2012, 21, 153–188. [Google Scholar] [CrossRef]
- Bouzebda, S. General tests of conditional independence based on empirical processes indexed by functions. Jpn. J. Stat. Data Sci. 2023, 6, 115–177. [Google Scholar] [CrossRef]
- Einmahl, U.; Mason, D.M. Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 2005, 33, 1380–1403. [Google Scholar] [CrossRef]
- Hardy, G.H. On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. Math 1905, 37, 53–79. [Google Scholar]
- Krause, M. Über Mittelwertsätze im Gebiete der Doppelsummen und Doppelintegrale. Leipz. Ber. 1903, 55, 239–263. [Google Scholar]
- Vitali, G. Sui gruppi di punti e sulle funzioni di variabili reali. Torino Atti 1908, 43, 229–246. [Google Scholar]
- Clarkson, J.A.; Adams, C.R. On definitions of bounded variation for functions of two variables. Trans. Amer. Math. Soc. 1933, 35, 824–854. [Google Scholar] [CrossRef]
- Vituškin, A.G. O Mnogomernyh Variaciyah; Gosudarstv. Izdat. Tehn.-Teor. Lit.: Moscow, Russia, 1955; p. 220. [Google Scholar]
- Hobson, E.W. The Theory of Functions of a Real Variable and the Theory of Fourier’s Series; Dover Publications: New York, NY, USA, 1958; Volume II, p. x+780. [Google Scholar]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1992; Volume 63, p. vi+241. [Google Scholar] [CrossRef]
- Giné, E.; Koltchinskii, V.; Zinn, J. Weighted uniform consistency of kernel density estimators. Ann. Probab. 2004, 32, 2570–2605. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. On the variable bandwidth kernel estimation of conditional U-statistics at optimal rates in sup-norm. Phys. A 2023, 625, 129000. [Google Scholar] [CrossRef]
- Han, F.; Qian, T. On inference validity of weighted U-statistics under data heterogeneity. Electron. J. Stat. 2018, 12, 2637–2708. [Google Scholar] [CrossRef]
- Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 1948, 19, 293–325. [Google Scholar] [CrossRef]
- Mason, D.M. Proving consistency of non-standard kernel estimators. Stat. Inference Stoch. Process. 2012, 15, 151–176. [Google Scholar] [CrossRef]
- Bouzebda, S. On the weak convergence and the uniform-in-bandwidth consistency of the general conditional U-processes based on the copula representation: Multivariate setting. Hacet. J. Math. Stat. 2023, 52, 1303–1348. [Google Scholar] [CrossRef]
- Bellet, A.; Habrard, A.; Sebban, M. A Survey on Metric Learning for Feature Vectors and Structured Data. arXiv 2013, arXiv:1306.6709. [Google Scholar]
- Clémençon, S.; Colin, I.; Bellet, A. Scaling-up empirical risk minimization: Optimization of incomplete U-statistics. J. Mach. Learn. Res. 2016, 17, 76. [Google Scholar]
- Jin, R.; Wang, S.; Zhou, Y. Regularized Distance Metric Learning: Theory and Algorithm. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A., Eds.; Curran Associates, Inc.: New York, NY, USA, 2009; Volume 22. [Google Scholar]
- Bellet, A.; Habrard, A. Robustness and generalization for metric learning. Neurocomputing 2015, 151, 259–267. [Google Scholar] [CrossRef]
- Cao, Q.; Guo, Z.C.; Ying, Y. Generalization bounds for metric and similarity learning. Mach. Learn. 2016, 102, 115–132. [Google Scholar] [CrossRef]
- Clémençon, S.; Lugosi, G.; Vayatis, N. Ranking and empirical minimization of U-statistics. Ann. Statist. 2008, 36, 844–874. [Google Scholar] [CrossRef]
- Rejchel, W. On ranking and generalization bounds. J. Mach. Learn. Res. 2012, 13, 1373–1392. [Google Scholar]
- Clémençon, S.; Robbiano, S.; Vayatis, N. Ranking data with ordinal labels: Optimality and pairwise aggregation. Mach. Learn. 2013, 91, 67–104. [Google Scholar] [CrossRef]
- Stute, W. Universally consistent conditional U-statistics. Ann. Statist. 1994, 22, 460–473. [Google Scholar] [CrossRef]
- Stute, W. Lp-convergence of conditional U-statistics. J. Multivar. Anal. 1994, 51, 71–82. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Dudley, R.M. A course on empirical processes. In École d’été de probabilités de Saint-Flour, XII—1982; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1984; Volume 1097, pp. 1–142. [Google Scholar] [CrossRef]
- Polonik, W.; Yao, Q. Set-indexed conditional empirical and quantile processes based on dependent data. J. Multivar. Anal. 2002, 80, 234–255. [Google Scholar] [CrossRef]
- Lehmann, E.L. A general concept of unbiasedness. Ann. Math. Stat. 1951, 22, 587–592. [Google Scholar] [CrossRef]
- Dwass, M. The large-sample power of rank order tests in the two-sample problem. Ann. Math. Statist. 1956, 27, 352–374. [Google Scholar] [CrossRef]
- Kohler, M.; Máthé, K.; Pintér, M. Prediction from randomly right censored data. J. Multivar. Anal. 2002, 80, 73–100. [Google Scholar] [CrossRef]
- Carbonez, A.; Györfi, L.; van der Meulen, E.C. Partitioning-estimates of a regression function under random censoring. Statist. Decis. 1995, 13, 21–37. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Maillot, B.; Viallon, V. Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data. Math. Methods Statist. 2009, 18, 159–184. [Google Scholar] [CrossRef]
- Bouzebda, S.; El-hadjali, T. Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data. J. Nonparametr. Stat. 2020, 32, 864–914. [Google Scholar] [CrossRef]
- Datta, S.; Bandyopadhyay, D.; Satten, G.A. Inverse probability of censoring weighted U-statistics for right-censored data with an application to testing hypotheses. Scand. J. Stat. 2010, 37, 680–700. [Google Scholar] [CrossRef]
- Stute, W.; Wang, J.L. Multi-sample U-statistics for censored data. Scand. J. Statist. 1993, 20, 369–374. [Google Scholar]
- Chen, Y.; Datta, S. Adjustments of multi-sample U-statistics to right censored data and confounding covariates. Comput. Statist. Data Anal. 2019, 135, 1–14. [Google Scholar] [CrossRef]
- Yuan, A.; Giurcanu, M.; Luta, G.; Tan, M.T. U-statistics with conditional kernels for incomplete data models. Ann. Inst. Statist. Math. 2017, 69, 271–302. [Google Scholar] [CrossRef]
- Földes, A.; Rejtὅ, L. A LIL type result for the product limit estimator. Z. Wahrsch. Verw. Geb. 1981, 56, 75–86. [Google Scholar] [CrossRef]
- Sudheesh, K.K.; Anjana, S.; Xie, M. U-statistics for left truncated and right censored data. Statistics 2023, 57, 900–917. [Google Scholar] [CrossRef]
- Tsai, W.Y.; Jewell, N.P.; Wang, M.C. A note on the product-limit estimator under right censoring and left truncation. Biometrika 1987, 74, 883–886. [Google Scholar] [CrossRef]
- Andersen, P.K.; Borgan, O.R.; Gill, R.D.; Keiding, N. Statistical Models Based on Counting Processes; Springer Series in Statistics; Springer: New York, NY, USA, 1993; p. xii+767. [Google Scholar] [CrossRef]
- Zhou, Y.; Yip, P.S.F. A strong representation of the product-limit estimator for left truncated and right censored data. J. Multivar. Anal. 1999, 69, 261–280. [Google Scholar] [CrossRef]
- Hall, P. Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Z. Wahrsch. Verw. Geb. 1984, 67, 175–196. [Google Scholar] [CrossRef]
- Härdle, W.; Marron, J.S. Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 1985, 13, 1465–1481. [Google Scholar] [CrossRef]
- Rachdi, M.; Vieu, P. Nonparametric regression for functional data: Automatic smoothing parameter selection. J. Statist. Plann. Inference 2007, 137, 2784–2801. [Google Scholar] [CrossRef]
- Benhenni, K.; Ferraty, F.; Rachdi, M.; Vieu, P. Local smoothing regression with functional data. Comput. Statist. 2007, 22, 353–369. [Google Scholar] [CrossRef]
- Shang, H.L. Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density. J. Nonparametr. Stat. 2014, 26, 599–615. [Google Scholar] [CrossRef]
- Li, Q.; Maasoumi, E.; Racine, J.S. A nonparametric test for equality of distributions with mixed categorical and continuous data. J. Econom. 2009, 148, 186–200. [Google Scholar] [CrossRef]
- Horowitz, J.L.; Spokoiny, V.G. An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 2001, 69, 599–631. [Google Scholar] [CrossRef]
- Gao, J.; Gijbels, I. Bandwidth selection in nonparametric kernel testing. J. Amer. Statist. Assoc. 2008, 103, 1584–1594. [Google Scholar] [CrossRef]
- Yu, B. Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 1994, 22, 94–116. [Google Scholar] [CrossRef]
- Didi, S.; Bouzebda, S. Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes. Mathematics 2022, 10, 4356. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results. Comm. Statist. Theory Methods 2017, 46, 1367–1406. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A. Asymptotic properties of conditional U-statistics using delta sequences. Comm. Statist. Theory Methods 2024, 53, 4602–4657. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wu, H.T. Local linear regression on manifolds and its geometric interpretation. J. Amer. Statist. Assoc. 2013, 108, 1421–1434. [Google Scholar] [CrossRef]
- Bouzebda, S.; Cherfi, M. General bootstrap for dual ϕ-divergence estimates. J. Probab. Stat. 2012, 2012, 834107. [Google Scholar] [CrossRef]
- Bouzebda, S.; Limnios, N. On general bootstrap of empirical estimator of a semi-Markov kernel with applications. J. Multivar. Anal. 2013, 116, 52–62. [Google Scholar] [CrossRef]
- Bernstein, S. Sur l’extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Ann. 1927, 97, 1–59. [Google Scholar] [CrossRef]
- Arcones, M.A.; Giné, E. Limit theorems for U-processes. Ann. Probab. 1993, 21, 1494–1542. [Google Scholar] [CrossRef]
- Giné, E.; Zinn, J. Some limit theorems for empirical processes. Ann. Probab. 1984, 12, 929–998, With discussion. [Google Scholar] [CrossRef]
- Soukarieh, I.; Bouzebda, S. Weak Convergence of the Conditional U-statistics for Locally Stationary Functional Time Series. Stat. Inference Stoch. Process. 2024, 27, 227–304. [Google Scholar] [CrossRef]
- Masry, E. Multivariate local polynomial regression for time series: Uniform strong consistency and rates. J. Time Ser. Anal. 1996, 17, 571–599. [Google Scholar] [CrossRef]
- de la Peña, V.H. Decoupling and Khintchine’s inequalities for U-statistics. Ann. Probab. 1992, 20, 1877–1892. [Google Scholar] [CrossRef]
- Lee, A.J. U-Statistics: Theory and Practice; Statistics: Textbooks and Monographs Series; Marcel Dekker Inc.: New York, NY, USA, 1990; Volume 110, p. xii+302. [Google Scholar]
- Blum, J.R.; Kiefer, J.; Rosenblatt, M. Distribution free tests of independence based on the sample distribution function. Ann. Math. Statist. 1961, 32, 485–498. [Google Scholar] [CrossRef]
- Bergsma, W.; Dassios, A. A consistent test of independence based on a sign covariance related to Kendall’s tau. Bernoulli 2014, 20, 1006–1028. [Google Scholar] [CrossRef]
- Borovkova, S.; Burton, R.; Dehling, H. Consistency of the Takens estimator for the correlation dimension. Ann. Appl. Probab. 1999, 9, 376–390. [Google Scholar] [CrossRef]
- Silverman, B.W. Distances on circles, toruses and spheres. J. Appl. Probab. 1978, 15, 136–143. [Google Scholar] [CrossRef]
- Hollander, M.; Proschan, F. Testing whether new is better than used. Ann. Math. Statist. 1972, 43, 1136–1146. [Google Scholar] [CrossRef]
- Gini, C. Measurement of Inequality of Incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Chen, L.; Wan, A.T.K.; Zhang, S.; Zhou, Y. Distributed algorithms for U-statistics-based empirical risk minimization. J. Mach. Learn. Res. 2023, 24, 1–43. [Google Scholar]
- Fygenson, M.; Ritov, Y. Monotone estimating equations for censored data. Ann. Statist. 1994, 22, 732–746. [Google Scholar] [CrossRef]
- Brown, B.M.; Wang, Y.G. Induced smoothing for rank regression with censored survival times. Stat. Med. 2007, 26, 828–836. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzebda, S. Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics 2024, 12, 1996. https://doi.org/10.3390/math12131996
Bouzebda S. Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics. 2024; 12(13):1996. https://doi.org/10.3390/math12131996
Chicago/Turabian StyleBouzebda, Salim. 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design" Mathematics 12, no. 13: 1996. https://doi.org/10.3390/math12131996
APA StyleBouzebda, S. (2024). Limit Theorems in the Nonparametric Conditional Single-Index U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics, 12(13), 1996. https://doi.org/10.3390/math12131996