Revisiting the Hansen Problem: A Geometric Algebra Approach
Abstract
:1. Introduction
1.1. Motivation
1.2. Background and Literature Review
1.3. Contributions
1.4. Outline
2. Methodology
2.1. Solution via Classical Trigonometry
2.2. Solution via Complex Numbers
2.3. Solution via Vector Geometric Algebra (VGA)
2.3.1. VGA Solution Method
- The measurements of angles and can be identified immediately from the data.
- The two triangles and share the same base .
- Thanks to these observations, we can make good use of the “fictitious base” idea by formulating triangles that are similar to and , whose bases are parallel to , and that are equal in length to .
2.4. Solution via Conformal Geometric Algebra (CGA)
CGA Solution Method
3. Examples, Results and Discussion
3.1. Benchmarking to Assess the Computational Efficiency of the Four Algorithms
3.2. Uncertainty Analysis: Effects of Measurement Error on the Accuracy and Robustness of the Four Algorithms
3.3. Discussion of the Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ventura, J.; Martinez, F.; Manzano-Agugliaro, F.; Návrat, A.; Hrdina, J.; Eid, A.H.; Montoya, F.G. A novel geometric method based on conformal geometric algebra applied to the resection problem in two and three dimensions. J. Geod. 2024, 98, 47. [Google Scholar] [CrossRef]
- Porta, J.M.; Thomas, F. Concise proof of Tienstra’s formula. J. Surv. Eng. 2009, 135, 170–172. [Google Scholar] [CrossRef]
- Ligas, M. Simple solution to the three point resection problem. J. Surv. Eng. 2013, 139, 120–125. [Google Scholar] [CrossRef]
- Font-Llagunes, J.M.; Batlle, J.A. New method that solves the three-point resection problem using straight lines intersection. J. Surv. Eng. 2009, 135, 39–45. [Google Scholar] [CrossRef]
- Hansen, P.A. Eine Aufgabe aus der practischen Geodasie und deren Auflösung. Von Herrn Professor Hansen. Astron. Nachrichten 1841, 18, 165. (In German) [Google Scholar] [CrossRef]
- Gerling, C.L. Auszug aus einem Schreiben des Herrn Professors Gerling an den Herausgeber. Astron. Nachrichten 1824, 3, 231. (In German) [Google Scholar] [CrossRef]
- McCaw, G.T. Resection in survey. Geogr. J. 1918, 52, 105–123. [Google Scholar] [CrossRef]
- Rogers, J. A Study of the Resection Problem in Surveying. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1964. [Google Scholar]
- Martín-Pastor, A. Resolución del Problema de “Hansen” Por un Procedimiento Gráfico. In Proceedings of the Congreso Internacional de Ingeniería Gráfica—XV ADM, Sevilla, Spain, 1–3 July 2005. (In Spanish). [Google Scholar]
- Dorst, L.; Doran, C.; Lasenby, J. Applications of Geometric Algebra in Computer Science and Engineering; Birkhäuser-Springer: Boston, MA, USA, 2012. [Google Scholar]
- Hildenbrand, D. Geometric computing in computer graphics using conformal geometric algebra. Comput. Graph. 2005, 29, 795–803. [Google Scholar] [CrossRef]
- Willerding, E. Die Pothenotsche Aufgabe und ihre Erweiterungen; Eugen Willerding: Bonn, Germany, 2020. [Google Scholar]
- Barabanova, L. Application of Complex Numbers to geodesy on the Example of Hansen’s problem. News of Higher Educational Institutions. Geod. Aer. Photogr. 2013, 24–29. (In Russian) [Google Scholar]
- Song, Z.; Zhao, C.; Pu, H.; Li, X. Configuration analysis of two-dimensional resection networks. J. Surv. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Ganić, A.; Milutinović, A.; Gojković, Z.; Mikanović, R.; Vidanović, N. Standard deviation of the geodetic quadrilateral point coordinates determined by the application of Hansen’s method. Podzemni Radovi 2015, 26, 55–64. [Google Scholar] [CrossRef]
- Carluzzi, R.; Riggio, A. Topografia di Base: Fondamentali della Geomatica per la Misura e Rappresentazione del Territorio; Quaderni per la progettazione, EPC: Roma, Italy, 2015. (In Italian) [Google Scholar]
- Eid, A.H.; Montoya, F.G. A geometric procedure for computing differential characteristics of multi-phase electrical signals using geometric algebra. In Proceedings of the International Conference on Advanced Computational Applications of Geometric Algebra, Denver, CO, USA, 2–5 October 2022; Springer: Berlin, Germany, 2022; pp. 125–137. [Google Scholar]
- Eid, A.H.; Montoya, F.G. A systematic and comprehensive geometric framework for multiphase power systems analysis and computing in time domain. IEEE Access 2022, 10, 132725–132741. [Google Scholar] [CrossRef]
- Hildenbrand, D. Introduction to Geometric Algebra Computing; Chapman and Hall/CRC: New York, NY, USA, 2020. [Google Scholar]
- Collins, J. A Solution, given by Mr. John Collins of a chorographical probleme, proposed by Richard Townley Esq. who doubtless hath solved the same otherwise. Philos. Trans. 1671, 6, 2093–2096. [Google Scholar] [CrossRef]
Symbol | Description | Context |
---|---|---|
A, B | Points A and B | Geometric Object |
, | Points and | Geometric Object |
ℓ, , | Lines | Geometric Object |
C, , | Circles | Geometric Object |
, | Position vectors of points A and B | Euclidean |
, | Position vectors of points and | Euclidean |
, | Basis vectors for 2D space | GA |
, | Basis vectors for the hyperbolic plane | CGA |
, | Null vectors in CGA | CGA |
Pseudoscalar of CGA | CGA | |
Bivector representing plane in 2D space | GA | |
, | Null vector representations of points A and B | CGA |
, | Null vector representations of points and | CGA |
Rotor for geometric rotation | CGA | |
Line ℓ in CGA | CGA | |
Circle C in CGA | CGA | |
Dual representation of line ℓ | CGA | |
Dual representation of circle C | CGA |
Implemented Method | Mean Execution Time (ms) | Rank # |
---|---|---|
VGA | 63.64 | 1 |
Complex | 76.11 | 2 |
Trigonometric | 133.90 | 3 |
CGA | 326.88 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventura, J.; Martinez, F.; Zaplana, I.; Eid, A.H.; Montoya, F.G.; Smith, J. Revisiting the Hansen Problem: A Geometric Algebra Approach. Mathematics 2024, 12, 1999. https://doi.org/10.3390/math12131999
Ventura J, Martinez F, Zaplana I, Eid AH, Montoya FG, Smith J. Revisiting the Hansen Problem: A Geometric Algebra Approach. Mathematics. 2024; 12(13):1999. https://doi.org/10.3390/math12131999
Chicago/Turabian StyleVentura, Jorge, Fernando Martinez, Isiah Zaplana, Ahmad Hosny Eid, Francisco G. Montoya, and James Smith. 2024. "Revisiting the Hansen Problem: A Geometric Algebra Approach" Mathematics 12, no. 13: 1999. https://doi.org/10.3390/math12131999
APA StyleVentura, J., Martinez, F., Zaplana, I., Eid, A. H., Montoya, F. G., & Smith, J. (2024). Revisiting the Hansen Problem: A Geometric Algebra Approach. Mathematics, 12(13), 1999. https://doi.org/10.3390/math12131999