Next Article in Journal
Joint Statistical Inference for the Area under the ROC Curve and Youden Index under a Density Ratio Model
Previous Article in Journal
A New Three-Phase Hybrid Multilevel Topology with Hybrid Modulation and Control Strategy for Front-End Converter Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Construction of Hermitian Self-Orthogonal Codes and Application

Fundamentals Department, Air Force Engineering University, Xi’an 710051, China
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(13), 2117; https://doi.org/10.3390/math12132117
Submission received: 27 March 2024 / Revised: 18 June 2024 / Accepted: 30 June 2024 / Published: 5 July 2024
(This article belongs to the Section Mathematical Physics)

Abstract

:
We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO) codes, and construct quaternary [ n ,   5 ] HSO for 342 n 492 . Furthermore, we present methods of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and obtain many HLCD codes with good parameters. As an application, 31 classes of entanglement-assisted quantum error correction codes (EAQECCs) with maximal entanglement can be obtained from these HLCD codes. These new EAQECCs have better parameters than those in the literature.

1. Introduction

Let F 4 = 0 ,   1 ,   ω ,   ω 2 be the field with four elements, where ω 2 = 1 + ω , and F 4 n be the n-dimensional row space over F 4 . For x F 4 , its conjugate is x ¯ = x 2 . A quaternary [ n ,   k ] code C is a k-dimensional subspace of F 4 n , vectors in C are called as codewords of C . If the minimal Hamming weights of non-zero codewords in C is d, then C is denoted as C = [ n ,   k ,   d ] . A linear code [ n ,   k ,   d ] is optimal if there is no [ n ,   k ,   d + 1 ] code; such a code is denoted as C = [ n ,   k ,   d o p ( n ,   k ) ] . For u = ( u 1 ,   u 2 u n ) , v = ( v 1 ,   v 2 v n ) F 4 n , their Hermitian inner product is ( u ,   v ) h = i = 1 n u i · v i ¯ = i = 1 n u i · v i 2 . The Hermitian dual code C C h is defined as C h = { u F 4 n ( u ,   v ) h = 0 , v C } . If C C h , then C is called as an HSO code. In particular, if C = C h , then C is called a Hermitian self-dual code. If C C h = { 0 } , then C is called an HLCD code.
In the past 30 years, much work has been conducted concerning quaternary optimal linear codes for both theoretical and practical reasons (see, e.g., [1,2,3,4,5] and the references given therein). By 1996, the parameters of all optimal linear codes with k 4 were determined [2,3,4]. Since 1996, people have paid much attention to optimal linear codes with k = 5 ; to date, there are yet 104 open cases on the parameters of optimal linear codes (see [3,4,5,6]). If d o p ( n ,   k ) is not determined for a given n ,   k , a code C with the largest known distance d b k ( n ,   k ) is denoted as C = [ n ,   k ,   d b k ( n ,   k ) ] . Quaternary HSO codes and HLCD codes are special kinds of linear codes, these two kinds of codes have connections with many branches of mathematics and quantum information [7,8,9,10,11,12,13,14,15,16,17,18,19]. In recent years, there has been an increasing interest in optimal HSO and HLCD codes. A HSO (or HLCD) [ n ,   k ,   d ] code is called optimal if there is no HSO (or HLCD) [ n ,   k ,   d ] code for d > d . Entanglement-assisted (EA) stabilizer formalism was devised by Brun et al. in [20]. It has been proven that each [ n ,   k ,   d ] quaternary HLCD code gave a maximal entanglement-assisted quantum code with a parameter [ [ n ,   k ,   d ;   n k ] ] 2 by [14,19,21]. Under this EA stabilizer formalism, any quaternary HLCD code can be transformed into a maximal EAQECC if the shared entanglement is available between sender and receiver. Hence, it is important to study optimal quaternary HLCD codes for constructing [ [ n ,   k ,   d ;   n k ] ] 2 EAQECCs.
Recall that, from 1978 to 1998, people paid much attention to special HSO codes—self-dual codes with short lengths (see [7,8,9,10]). In 1998, Calderbank et al. [11] set up connections among quantum codes, binary symplectic codes, and HSO codes; this inspired people to study HSO codes over F 4 for general length n. Bouyukliev et al. [12] discussed the classification of optimal HSO codes over F 4 for length n 29 and low dimensions. Ma et al. [13] determined the parameters of optimal HSO codes over F 4 for all n and k 3 . Recently, Refs. [17,18] determined the parameters of optimal [ n ,   4 ] HSO codes for all n 8 and most [ n ,   5 ] HSO codes for n 341 . In [14], Lu et al. showed that an [ n ,   k ,   d ] HLCD (also called zero radical) code can derive an [ [ n ,   k ,   d ; n k ] ] 2 EAQECC, they construct many good EAQECCs. According to [14,15,16], the parameters of optimal HLCD codes were determined for all n and k 3 . Refs. [14,19] discussed the construction of [ n ,   4 ] HLCD codes with 4 n 85 and [ n ,   5 ] HLCD codes with 5 n 341 , respectively. They have given some optimal HLCD codes and good low bounds on the distance of optimal HLCD codes. According to [3], the parameters of optimal [ n ,   5 ] linear codes for n 492 are known and can be constructed using a unified method of puncturing. Thus, the construction of [ n ,   5 ] optimal HSO codes for n 492 can be conducted as we conducted in [18] for constructing [ n ,   4 ] HSO codes with n 124 . According to [6,14,18,19], when discussing [ n ,   5 ] HSO codes and HLCD codes, we should consider codes with length n such that 342 n 492 .
This paper is organized as follows. In Section 2, we prepare the definitions, notations, and basic results used in this paper. In Section 3, the construction of [ n ,   5 ] HSO codes is presented. In Section 4, we derive [ n ,   5 ] HLCD codes from known HSO codes and related EAQECCs. Finally, in Section 5, we conclude this paper.

2. Preliminaries

In this section, some notations, definitions, and basic results are given (for details, see Ref. [22]).
Throughout this paper, we use the following notations. We assume all codes are linear codes over F 4 , and use 2 and 3 to represent ω and ω 2 in F 4 , respectively. Let 1 n = ( 1 ,   1 ,   ,   1 ) 1 × n and 0 n = ( 0 ,   0 ,   ,   0 ) 1 × n denote the all-one vector and the all-zero vector of length n, respectively. Let 0 denote a zero matrix of appropriate size and I k denote the identity matrix of order k. Let A T denote the transpose of a matrix A, and let A denote the conjugate transpose of A.
Let C = [ n ,   k ] . A k × n matrix G whose rows form a basis of C is called a generator matrix. The weight enumerator of C is w ( z ) = i = 0 n A i z i = A 0 + A 1 z + + A n z n , where A i is the number of codewords in C with weight equal to i for 0 i n . We say that two [ n ,   k ] codes C 1 and C 2 are equivalent, provided there is a monomial matrix M such that C 2 = C 1 M . A code C is called an even code if all its codewords have even weights [22]. According to Ref. [11], C is a HSO code if and only if it is an even code. Using the generator matrix, one can give the following criterion for a code to be HSO or HLCD.
Proposition 1
([15]). Let G be a generator matrix of C ; then,
(1) 
C is an HSO code if and only if G G = 0 .
(2) 
C is a HLCD code if and only if G G is nonsingular.
Definition 1.
If A = A k ,   m is a k × m matrix and the vectors formed by row linear combination of A have the largest weight δ, then A is called as an ( m ,   δ ) block. If A A = 0 , A is called an ( m ,   δ ) HSO block. If A A is nonsingular, A is called an ( m ,   δ ) HLCD block.
We introduce some methods for constructing new codes from known ones. Lemmas 1 and 2 are directly obtained from [17] for linear codes. Lemma 3 and 4 can be derived from [18]. These four lemmas give the constructions of HSO codes by juxtaposition, pasting, puncturing, and shorting, respectively.
Lemma 1
([17]). Suppose C 1 and C 2 are [ n 1 ,   k ,   d 1 ] and [ n 2 ,   k ,   d 2 ] HSO codes, respectively. If C 1 and C 2 have generator matrices G 1 and G 2 , respectively, then ( G 1 G 2 ) generates an [ n 1 + n 2 ,   k ,   d 1 + d 2 ] HSO code.
Lemma 2
([17]). Suppose C 1 and C 2 are [ n 1 ,   k ,   d 1 ] and [ n 2 ,   k 1 ,   d 2 ] HSO codes, respectively. If C 1 contains a codeword of weight at least d 1 + d 2 , then there exists an [ n 1 + n 2 ,   k ,   d 1 + d 2 ] HSO code.
Lemma 3.
Suppose C = [ n ,   k ,   d ] is an HSO code with generator matrix G k , n and G k , n has a k × m sub-matrix A. If A is an ( m ,   δ ) HSO (HLCD) block, then there is an [ n m ,   k ,   d δ ] HSO (HLCD) code.
Proof. 
Let generator matrix G k , n = ( A k , m B k   n m ) , then
G k , n G k , n = A k , m A k , m + B k , n m B k , n m +
according to C is a HSO code.
Let A k , m generate an HSO code C A . α is a codeword in C A with minimum Hamming weight δ . Since HSO code C = [ n ,   k ,   d ] , there is a codeword β in C with minimum Hamming weight d. B k , n m = ( G k , n A k , m ) . According to [22], B k , n m generates an [ n m , k , d B ] code with d B = d δ .
(1)
If A k , m is an ( m , δ ) HSO block, r a n k ( G k , n G k , n ) = r a n k ( A k , m A k , m ) = 0 . Then, r a n k ( B k , n m B k , n m ) = 0 and B k , n m generates an [ n m , k , d δ ] HSO code.
(2)
If A k , m is an ( m , δ ) HLCD block, r a n k ( G k , n G k , n ) = 0 and r a n k ( A k , m A k , m ) = k . Then, r a n k ( B k , n m B k , n m ) = k , B k , n m generates an [ n m , k , d δ ] HLCD code.
Lemma 4.
Suppose n 341 + 4 and C = [ n ,   5 ,   d ] is an HSO code with d 6 . Then, there are [ n i , 4 , d 2 i / 2 ] HSO codes for i = 1 , 2 , 3 , 4 .

3. Constructing HSO Codes

In this section, we discuss the construction of [ n , 5 ] HSO codes for 342 n 492 ; our results are given in two subsections.

3.1. [ n , 5 ] HSO Codes for 342 n 407

In [3], the authors introduced a dual transform method for constructing new codes from known codes; they derived the existence of three codes with parameters [ 364 ,   5 ,   272 ] , [ 386 ,   5 ,   288 ] , and [ 407 ,   5 ,   304 ] from three known codes with parameters [ 27 ,   5 ,   16 ] , [ 38 ,   5 ,   24 ] , and [ 28 ,   5 ,   16 ] , respectively. Using Magma [23], we can check that these three codes [ 364 ,   5 ,   272 ] , [ 386 ,   5 ,   288 ] , [ 407 ,   5 ,   304 ] have generator matrices G 5 , 364 , G 5 , 386 , and G 5 , 407 (see Appendix A.1) and weight enumerators 1 + 942 x 272 + 81 x 288 , 1 + 213 x 288 + 42 x 304 , and 1 + 924 x 304 + 99 x 320 , respectively.
We try to find HSO blocks in G 5 , 364 . It is not difficult to see that A 01 a and A 01 b have submatrices S A 01 a and S A 01 a and S A 01 b and S A 01 b as follows, where
S A 01 a = 0000 1111 0000 0123 1111 ,   S A 01 a = 0000 1111 1111 3333 0123 ,   S A 01 b = 0000 1111 2222 0123 3102 ,   S A 01 b = 0000 1111 3333 0123 1032 ,
Columns ( 00010 ) T , ( 00001 ) T , ( 00012 ) T , and ( 00011 ) T from A 00 are added to matrices S A 01 a , S A 01 a , S A 01 b , and S A 01 b , respectively. One can obtain four 5 × 5 matrices, X 1 , X 2 , X 3 , and X 4 , of G 5 , 364 , respectively, and they all satisfy X i · X i = 0 for i = 1 ,   2 ,   3 ,   4 . It is easy to see that these X i are formed by different columns of G 5 , 364 , and each is a ( 5 ,   4 ) HSO block; thus, G 5 , 364 has ( 5 ,   4 ) , ( 10 ,   8 ) , ( 15 ,   12 ) , and ( 20 ,   16 ) HSO blocks. According to Lemma 3, by removing these blocks, in turn, from G 5 , 364 , HSO codes [ 364 5 i ,   5 ,   272 4 i ] for i = 0 ,   1 ,   2 ,   3 ,   4 can be constructed from G 5 , 364 . From previous discussions, using Lemmas 3 and 4, we can achieve the following theorem.
Theorem 1.
Based on the [ 364 ,   5 ,   272 ] HSO code, HSO codes with the following parameters can be constructed:
(1) 
[ 364 5 i ,   5 ,   272 4 i ] for i = 0 ,   1 ,   2 ,   3 ,   4 ;
(2) 
[ 364 5 i j ,   5 ,   272 4 i 2 j 2 ] for i = 0 ,   1 ,   2 ,   3 and j = 1 ,   2 ,   3 ,   4 .
Similar to the above discussion, we can show that G 5 , 386 has four 5 × 5 submatrices, Y 1 , Y 2 , Y 3 , and Y 4 , and G 5 , 407 has four 5 × 5 submatrices, Z 1 , Z 2 , Z 3 , and Z 4 , where
Y 1 = 0000   0 0000   0 0111   1 1012   3 0333   3 ,   Y 2 = 0111   1 0000   0 0000   0 1012   3 1012   3 ,   Y 3 = 0111   1 0000   0 0222   2 1012   3 3031   2 ,   Y 4 = 0111   1 0111   1 1012   3 0111   1 0000   0 ; Z 1 = 0000   0 0000   0 0111   1 0333   3 1012   3 ,   Z 2 = 0000   0 0111   1 0000   0 1012   3 1230   1 ,   Z 3 = 0000   0 0111   1 0111   1 1012   3 2132   0 ,   Z 4 = 0000   0 0111   1 0222   2 1012   3 3120   3 .
It is easy to see that these Y i are formed by different columns of G 5 , 386 , with each being a ( 5 ,   4 ) HSO block; these Z i are formed by different columns of G 5 , 407 , with each being a ( 5 , 4 ) HSO block for i = 1 ,   2 ,   3 ,   4 . Hence, both of G 5 , 386 and G 5 , 407 have ( 5 ,   4 ) , ( 10 ,   8 ) , ( 15 ,   12 ) , and ( 20 ,   16 ) HSO blocks. According to Lemma 3, by removing these blocks, in turn, from G 5 , 386 and G 5 , 407 , HSO codes [ 386 5 i ,   5 ,   288 4 i ] and [ 407 5 i ,   5 ,   304 4 i ] for i = 0 ,   1 ,   2 ,   3 ,   4 can be constructed from G 5 , 386 and G 5 , 407 , respectively. From previous discussions, by using Lemmas 3 and 4, we can achieve the following theorem.
Theorem 2.
Based on the [ 386 ,   5 ,   288 ] and [ 407 ,   5 ,   304 ] HSO codes, HSO codes with the following parameters can be constructed:
(1) 
[ 386 5 i ,   5 ,   288 4 i ] for i = 0 ,   1 ,   2 ,   3 ,   4 ;
(2) 
[ 386 5 i j ,   5 ,   288 4 i 2 j 2 ] for i = 0 ,   1 ,   2 ,   3 and j = 1 ,   2 ,   3 ,   4 ;
(3) 
[ 407 5 i , 5 , 304 4 i ] for i = 0 ,   1 ,   2 ,   3 ,   4 ;
(4) 
[ 407 5 i j ,   5 ,   304 4 i 2 j 2 ] for i = 0 ,   1 ,   2 ,   3 and j = 1 ,   2 ,   3 ,   4 .

3.2. [ n ,   5 ] HSO Codes for 408 n 492

In this subsection, we use the McDonald code [ 256 ,   5 ,   192 ] and four known codes given in [4] to construct [ n ,   5 ] HSO codes for 408 n 492 .
In [4], four optimal codes [ 172 ,   5 ,   128 ] , [ 194 ,   5 ,   144 ] , [ 215 ,   5 ,   160 ] , and [ 236 ,   5 ,   176 ] and their generator matrices are given. It is easy to see that these four codes are HSO codes. Using column permutation (special equivalent transform M), we obtain four equivalent HSO codes with generator matrices G 5 , 172 = ( I 5 A 5 , 167 ) , G 5 , 194 = ( I 5 A 5 , 189 ) , G 5 , 215 = ( I 5 A 5 , 210 ) , and G 5 , 236 = ( I 5 A 5 , 231 ) , respectively, all these matrices are given in Appendix A.2.
Lemma 5.
If n = 256 + m , m 170 and there is an [ m ,   5 ,   d 5 , m ] HSO code, then there are HSO codes with the following parameters: [ n ,   5 ,   d ] = [ 256 + m ,   5 ,   192 + d 5 , m ] , [ n 5 i ,   5 ,   192 + d 5 , m 4 i ] for i = 1 ,   2 ,   3 ,   4 and [ n 5 i j ,   5 ,   192 + d 5 , m 4 i 2 j 2 ] for i = 0 ,   1 ,   2 ,   3 ,   4 and j = 1 ,   2 ,   3 ,   4 .
Proof. 
Suppose G 5 , n = ( M 5 G 5 , m ) , where G 5 , m = ( I A 5 , m 5 ) is a generator matrix of an [ m ,   5 ,   d 5 , m ] HSO code. Then, G 5 , n generates an [ n ,   5 ,   d ] = [ 256 + m ,   5 ,   192 + d 5 , m ] HSO code.
There are four submatrices in G 5 , 256 :
G a = 0111 0000 1231 0000 1231 ,   G b = 1111 0123 0000 0000 1111 ,   G c = 1111 0000 0123 1111 1111 ,   G d = 0000 0000 0000 0111 1231 .
Adding column vectors ( 1 ,   0 ,   0 ,   0 ,   0 ) T , ( 0 ,   1 ,   0 ,   0 ,   0 ) T , ( 0 ,   0 ,   1 ,   0 ,   0 ) T , and ( 0 ,   0 ,   0 ,   1 ,   0 ) T from G 5 , m to submatrices G a , G b , G c , and G d , respectively, we obtain four 5 × 5 submatrices, U 1 , U 2 , U 3 , and U 4 , of G 5 , n . It is obvious that these are formed by different columns of G 5 , n , all U i satisfy U i U i = 0 and are ( 5 , 4 ) HSO blocks for 1 i 4 . Hence, G 5 , n have ( 5 , 4 ) , ( 10 , 8 ) , ( 15 , 12 ) , and ( 20 , 16 ) HSO blocks.
By removing U i ( 1 i 4 ) from G 5 , n , in turn, one can derive that there are [ n 5 i , 5 , 192 + d 5 , m 4 i ] HSO codes for 0 i 4 . From n 5 i 345 , we can obtain [ 428 5 i j , 5 , 320 4 i 2 j 2 ] HSO codes for ( 0 i 4 , 1 j 4 ) . □
Since there are four HSO codes [ 172 ,   5 ,   128 ] , [ 194 ,   5 ,   144 ] , [ 215 ,   5 ,   160 ] , and [ 236 ,   5 ,   176 ] , we have the following corollary.
Corollary 1.
There are four groups of HSO codes:
(1) 
[ 428 5 i ,   5 ,   320 4 i ] for 0 i 4 , and [ 428 5 i j ,   5 ,   320 4 i 2 j 2 ] for 0 i 3 and 1 j 4 ;
(2) 
[ 450 5 i ,   5 ,   336 4 i ] for 0 i 4 , and [ 450 5 i j ,   5 ,   336 4 i 2 j 2 ] for 0 i 3 and 1 j 4 ;
(3) 
[ 472 5 i ,   5 ,   352 4 i ] for 0 i 4 , and [ 472 5 i j ,   5 ,   352 4 i 2 j 2 ] for 0 i 3 and 1 j 4 ;
(4) 
[ 492 5 i ,   5 ,   368 4 i ] for 0 i 4 , and [ 492 5 i j ,   5 ,   368 4 i 2 j 2 ] for 0 i 3 and 1 j 4 .
Summarizing the above two subsections, we construct [ n ,   5 ] HSO codes for each n with 342 n 492 .

4. Construction of HLCD Codes

In this section, we focus on constructing HLCD codes from known HSO codes in the last section by puncturing some HLCD blocks.
Lemma 6.
Let A i be ( 5 ,   4 ) HSO blocks for 1 i 4 and A = ( A 1 ,   A 2 ,   A 3 ,   A 4 ) . If n 341 , G 5 , n = ( A G 5 , n 20 ) is a generator matrix of an [ n ,   5 ,   d ] HSO code and G 5 , n 20 has ( j ,   j ) HLCD blocks for 5 j 9 . Then, there are [ n 5 i j ,   5 ,   d 4 i j ] HLCD codes for 0 i 3 and 5 j 9 .
Proof. 
Let B j be ( j ,   j ) HLCD blocks of G 5 , n 20 for 5 j 9 . Let D 5 i + j = ( A 1 ,   , A i B j ) for 1 i 4 and 5 j 9 . Then, these D 5 i + j are ( 5 i + j ,   4 i + j ) HLCD blocks of G 5 , n for 1 i 4 and 5 j 9 . Puncturing these blocks form G 5 , n ; then, one can obtain the generator matrix of [ n 5 i j ,   5 ,   d 4 i j ] HLCD codes for 0 i 3 and 5 j 9 . □
According to Section 3.1, for n = 364 ,   386 ,   407 , let d = 272 ,   288 ,   304 , respectively; there are [ n ,   5 ,   d ] HSO codes with generator matrices G 5 , n = ( A G 5 , n 20 ) , where A = ( A 1 ,   A 2 ,   A 3 ,   A 4 ) , as shown in Section 3, and G 5 , n 20 = ( G 5 , n A ) . Thus, if we can find that each G 5 , n 20 has ( j ,   j ) HLCD blocks B m , j for 5 j 9 and m = n 20 , then we can obtain [ n 5 i j ,   5 ,   d 4 i j ] HLCD codes. We check these facts in three cases.
Case 1.
Let m = 344 and G 5 , 344 = ( G 5 , 364 ( X 1 ,   X 2 ,   X 3 ,   X 4 ) . It is easy to check that G 5 , 344 has five ( j ,   j ) HLCD blocks B m , j for 5 j 9 , as follows:
B m , 5 = 1000   0 2100   0 2011   1 1010   3 1333   0 ,   B m , 6 = 10000   0 21000   0 20111   1 10110   3 13233   0 ,   B m , 7 = 100000   0 210000   0 201111   1 101310   3 132133   0 ,   B m , 8 = 1000000   0 2100000   0 2011111   1 1011310   3 1302133   0 , B m , 9 = 10000000   0 21000000   0 20111111   1 10101310   3 13022133   0 .
Case 2.
Let m = 366 , G 5 , 366 = ( G 5 , 386 ( Y 1 ,   Y 2 ,   Y 3 ,   Y 4 ) . It is easy to check that G 5 , 344 has five ( j , j ) HLCD blocks B m , j for 5 j 9 , as follows:
B m , 5 = 00011 00111 11313 23223 13231 ,   B m , 6 = 000011 100111 211313 323223 313231 ,   B m , 7 = 0011011 0011111 1133313 2333223 1311231 ,   B m , 8 = 00011011 10011111 21133313 32333223 31311231 , B m , 9 = 001111011 001111111 111313313 232323223 133131231 .
Case 3.
Let m = 387 and G 5 , 387 = ( G 5 , 407 ( Z 1 ,   Z 2 ,   Z 3 ,   Z 4 ) . It is easy to check that G 5 , 387 has five ( j ,   j ) HLCD blocks B m , j for 5 j 9 as follows:
B m , 5 = 1000   0 1110   0 3201   1 2121   2 2002   2 ,   B m , 6 = 10000   0 11110   0 32201   1 23121   2 22002   2 ,   B m , 7 = 100000   0 111110   0 313201   1 213121   2 223002   2 ,   B m , 8 = 1000000   0 1111110   0 3313201   1 2113121   2 2223002   2 , B m , 9 = 10000000   0 11111110   0 33113201   1 22213121   2 23223002   2 .
According to Section 3, for n = 428 ,   450 ,   471 ,   492 , let d = 320 ,   336 ,   352 ,   368 , respectively; there are [ n ,   5 ,   d ] HSO codes with generator matrices G 5 , n = ( U G 5 , 241 A 5 , n 261 ) , where U = ( U 1 ,   U 2 ,   U 3 ,   U 4 ) and G 5 , 241 = ( ( G 5 , 256 I 5 ) U ) . Thus, if we can find that each A 5 , n 261 has ( j ,   j ) HLCD blocks D m , j for 5 j 9 and m = n 261 , then we can obtain [ n 5 i j ,   5 ,   d 4 i j ] HLCD codes. We check these facts in four cases.
Case 4.
Let m = 167 , and A 5 , 167 is given in Appendix A.2. It is easy to check that A 5 , 167 has five ( j ,   j ) HLCD blocks D m , j for 5 j 9 , as follows:
D m , 5 = 0221   3 2132   2 2000   0 1302   0 1100   0 ,   D m , 6 = 01221   3 22132   2 20000   0 13302   0 13100   0 ,   D m , 7 = 022021   3 211332   2 200000   0 123202   0 101000   0 ,   D m , 8 = 0122021   3 2211332   2 2000000   0 1323202   0 1301000   0 , D m , 9 = 00322021   3 21011332   2 20000000   0 11223202   0 13001000   0 .
Case 5.
Let m = 189 , and A 5 , 189 is given in Appendix A.2. It is easy to check that A 5 , 189 has five ( j ,   j ) HLCD blocks D m , j for 5 j 9 , as follows:
D m , 5 = 00313 32202 22200 03311 11111 ,   D m , 6 = 000313 321202 221200 030311 111111 ,   D m , 7 = 0011313 3200202 2212200 0303311 1111111 ,   D m , 8 = 02011313 30200202 23212200 02303311 11111111 , D m , 9 = 010011313 332100202 232112200 023003311 111111111 .
Case 6.
Let m = 210 , and A 5 , 210 is given in Appendix A.2. It is easy to check that A 5 , 210 has five ( j ,   j ) HLCD blocks D m , j for 5 j 9 , as follows:
D m , 5 = 33131 01211 10210 00200 22031 ,   D m , 6 = 333131 101211 310210 000200 122031 ,   D m , 7 = 3133131 1201211 3110210 0200200 1322031 ,   D m , 8 = 32133131 11201211 30110210 01200200 12322031 , D m , 9 = 132133131 211201211 030110210 201200200 212322031 .
Case 7.
Let m = 231 , and A 5 , 231 is given in Appendix A.2. It is easy to check that A 5 , 231 has five ( j ,   j ) HLCD blocks D m , j for 5 j 9 , as follows:
D m , 5 = 12210 30012 01021 20131 32332 ,   D m , 6 = 112210 230012 201021 120131 032332 ,   D m , 7 = 1112210 2230012 2201021 1120131 0032332 ,   D m , 8 = 11112210 22230012 02201021 31120131 20032332 , D m , 9 = 111112210 232230012 032201021 311120131 200032332 .
Summarizing previous discussions, from seven HSO codes (which are also optimal codes), [ 364 ,   5 ,   272 ] , [ 386 ,   5 ,   288 ] , [ 407 ,   5 ,   304 ] , [ 428 ,   5 ,   320 ] , [ 450 ,   5 ,   336 ] , [ 471 ,   5 ,   352 ] , and [ 492 ,   4 ,   368 ] , we can derive seven groups of HLCD codes, as follows.
Theorem 3.
Let 0 i 4 , 5 j 9 . There are seven groups of HLCD codes with lengths 342 n 487 :
[ 364 5 i j ,   5 ,   272 4 i j ] , [ 386 5 i j ,   5 ,   288 4 i j ] , [ 407 5 i j ,   5 ,   304 4 i j ] , [ 428 5 i j ,   5 ,   320 4 i j ] , [ 450 5 i j ,   5 ,   336 4 i j ] , [ 471 5 i j ,   5 ,   352 4 i j ] , and [ 492 5 i j ,   4 ,   368 4 i j ] .
Comparing the parameters of the above new HLCD codes with those in [19], one can see that 31 of our HLCD codes have larger distances than those [ n ,   5 ] of the same lengths in [19], and most of the others have the same distances as those in [19]. Table 1 shows our 31 HLCD codes and theirs.
For each of our [ m ,   5 ,   d ] HLCD codes given in Table 1, we can derive [ 341 s + m ,   5 ,   256 s + d ] HLCD codes for s 0 .
Theorem 4.
If [ m ,   5 ,   d ] is one of our 31 HLCD codes given in Table 1, then there are [ [ 341 s + m ,   5 ,   256 s + d ;   341 s + m 5 ] ] 2 EAQECCs for s 0 . Thus, we obtain 31 classes of EAQECCs better than those in [19] of the same lengths.

5. Conclusions

In this paper, we have studied the construction of HSO codes and HLCD codes with good minimum distances from known codes and further constructed EAQECCs with good parameters.
The largest minimum distance d s o of HSO codes for 342 n 492 has been given above. If d o p ( n , 5 ) is determined for a given n, for any optimal linear code [ n ,   5 ,   d o p ( n ,   5 ) ] , an HSO code with d s o ( n ,   5 ) = 2 d o p ( n ,   5 ) 2 could be constructed. If d o p ( n ,   5 ) is not determined for given n, for any linear code [ n ,   5 ,   d b k ( n ,   5 ) ] , an HSO code with d s o ( n ,   5 ) = 2 d b k ( n ,   5 ) 2 could be constructed. The minimum distance has been optimized for all the above HSO codes.
Based on these HSO codes, we can further construct HLCD codes with lengths 342 n 492 . The parameters of these HLCD codes are as follows: [ n 5 i j ,   5 ,   d s o ( n ,   5 ) 4 i j ] for n = 364 ,   386 ,   407 ,   428 ,   450 ,   471 ,   492 , 0 i 4 and 5 j 9 . By comparing with ones in the literature, it is easy to know that our 31 HLCD codes in Table 1 have better parameters. From these HLCD codes, we have obtained 31 classes of entanglement-assisted quantum codes with maximal entanglement.

Author Contributions

Conceptualization, Y.R. and R.L.; methodology, R.L.; software, Y.R.; validation, Y.R. and R.L.; formal analysis, Y.R. and R.L.; investigation, Y.R.; data curation, Y.R. and H.S.; writing—original draft preparation, Y.R.; writing—review and editing, R.L. and H.S.; visualization, Y.R.; supervision, R.L.; funding acquisition, R.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (under Grant No. U21A20428), the Natural Science Foundation of Shaanxi Province (under Grant Nos. 2023-JC-YB-003, 2023-JC-QN-0033, and 2024JC-YBMS-055).

Data Availability Statement

Data are available upon request to the corresponding author.

Acknowledgments

We sincerely appreciate the time and effort invested by anonymous reviewers; their comments are all valuable and helpful for improving our manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
HSOHermitian self-orthogonal
HLCDHermitian linear complementary dual
EAQECCEntanglement-assisted quantum error-correcting code

Appendix A. Generator Matrices of Some Special Optimal HSO Codes

Appendix A.1. Generator matrices G 5,386 and G 5,407 in Section 3.1

Let G 5 , 364 = ( A 00 ,   A 01 a ,   A 01 b ,   A 10 a ,   A 10 b ,   A 11 a ,   A 11 b ,   A 12 a ,   A 12 b ,   A 13 a ,   A 13 b ) , where
A 00 = 0000000000000000 0000000000000000 0000111111111111 0111001111223333 1012230123130122 ,   A 01 a = 0000000000000000000000000000 1111111111111111111111111111 0000000000001111111111111111 0001112223330001112222233333 0131231321230120231122301123 , A 01 b = 00000000000000000000000000000000 11111111111111111111111111111111 22222222222222223333333333333333 00011122222333330000111122223333 12312301223012330123012301231233 ,   A 10 a = 111111111111111111111111111   1 0000000000000000000000000000000   0 000000000000111111111111111   1 001111222333000111112222333   3 010123123013012012230123012   3 , A 10 b = 1111111111111111111111111111111   1 0000000000000000000000000000000   0 2222222222222222333333333333333   3 0000111122222333000011112222233   3 0123012301122123012301230122123   3 ,   A 11 a = 11111111111111111111111111111111111   1 11111111111111111111111111111111111   1 00000000000000001111111111111111111   1 00011111222233330000011111222233333   3 12301123012301230123300123012201223   3 , A 11 b = 111111111111111111111111111111111111111   1 111111111111111111111111111111111111111   1 222222222222222222223333333333333333333   3 000011111122222333330000011111222233333   3 012300112301223011230112211223012300123   3 ,   A 12 a = 11111111111111111111111111111111111   1 22222222222222222222222222222222222   2 00000000000000001111111111111111111   1 00001122222333330000011111222222333   3 12330200123011230122301233011233012   2 , A 12 b = 111111111111111111111111111111111111111   1 222222222222222222222222222222222222222   2 222222222222222222223333333333333333333   3 000001111122223333330001111122222233333   3 0112301223012300112221230123301123300112   2 ,   A 13 a = 11111111111111111111111111111111111   1 33333333333333333333333333333333333   3 00000000000000001111111111111111111   1 00011111222233330001111122222233333   3 01201123012301230230112301223300112   3 , A 13 b = 111111111111111111111111111111111111111   1 333333333333333333333333333333333333333   3 222222222222222222223333333333333333333   3 000111112222223333330000111111222223333   3 012012230011230122330123011223011231223   3 .
Let G 5 , 386 = ( B 00 ,   B 01 a ,   B 01 b ,   B 10 a ,   B 10 b ,   B 11 a ,   B 11 b ,   B 12 a ,   B 12 b ,   B 13 a ,   B 13 b ) , where
B 00 = 00000000000000000   0 00000000000000000   0 00001111111111111   1 11110000111122233   3 01130123012311323   3 ,   B 01 a = 000000000000000000000000000   0 111111111111111111111111111   1 000000000000001111111111111   1 000111222333330001112222333   3 123013123012331231230123012   3 , B 01 b = 00000000000000000000000000000000000   0 11111111111111111111111111111111111   1 22222222222222222233333333333333333   3 00001111122223333300001112222222333   3 02230122301131223312330130012223022   3 ,   B 10 a = 1111111111111111111111111111111   1 0000000000000000000000000000000   0 0000000000000011111111111111111   1 0000111222233300011112222333333   3 0123012012301311201230122001122   3 , B 10 b = 1111111111111111111111111111111   1 0000000000000000000000000000000   0 2222222222222222223333333333333   3 0000111122222233330001112222333   3 0123012301122301230121230123012   2 ,   B 11 a = 111111111111111111111111111111111111111   1 111111111111111111111111111111111111111   1 000000000000000000111111111111111111111   1 000011111222233333000111122222222333333   3 012301123011301223123012200122333001123   3 , B 11 b = 111111111111111111111111111111111111111   1 111111111111111111111111111111111111111   1 222222222222222222333333333333333333333   3 000111112222222333000011111111222333333   3 013012330011223123001200112233123001112   3 ,   B 12 a = 11111111111111111111111111111111111   1 22222222222222222222222222222222222   2 00000000000000000011111111111111111   1 00011112222222333300000111122223333   3 01302330011223012301123122322330112   3 , B 12 b = 1111111111111111111111111111111111111111111   1 2222222222222222222222222222222222222222222   2 2222222222222222222222333333333333333333333   3 0001111111222222233333000000011111112222333   3 0230011223001223301223001122301122330123001   2 ,   B 13 a = 11111111111111111111111111111111111   1 33333333333333333333333333333333333   3 00000000000000111111111111111111111   1 00001112222333000011111112222222333   3 01121230123123012301122330112233011   3 , B 13 b = 1111111111111111111111111111111111111111111   1 3333333333333333333333333333333333333333333   3 2222222222222222222222333333333333333333333   3 0000011111112223333333000001111122223333333   3 0122300122331230011223011230122312230011223   3 .
Let G 5 , 407 = ( D 00 ,   D 01 a ,   D 01 b ,   D 10 a ,   D 10 b ,   D 11 a ,   D 11 b ,   D 12 a ,   D 12 b ,   D 13 a ,   D 13 b ) , where
D 00 = 000000000000000000   0 000000000000000000   0 000011111111111111   1 011100111112222333   3 112323012231223012   3 ,   D 01 a = 00000000000000000000000000000   0 11111111111111111111111111111   1 00000000000000011111111111111   1 00011111222223300111122222333   3 12301223001231213122301223011   2 , D 01 b = 0000000000000000000000000000000000000   0 1111111111111111111111111111111111111   1 2222222222222222222333333333333333333   3 0001111112222233333000011111222223333   3 1230012330122301223012301223012330123   3 ,   D 10 a = 11111111111111111111111111111   1 00000000000000000000000000000   0 00000000000111111111111111111   1 00111223333000011111222223333   3 23023230123123300123012330012   3 , D 10 b = 1111111111111111111111111111111111111   1 0000000000000000000000000000000000000   0 2222222222222222222333333333333333333   3 0000011122222333333000001111122223333   3 0223312301233112233012230122301230122   3 ,   D 11 a = 1111111111111111111111111111111111111   1 1111111111111111111111111111111111111   1 0000000000000000000111111111111111111   1 0000011122222233333000011112222223333   3 0123302300123301123012301230112230122   3 , D 11 b = 111111111111111111111111111111111111111111111   1 111111111111111111111111111111111111111111111   1 222222222222222222222223333333333333333333333   3 000000111112222233333330000011112222222333333   3 011223012231122301122330122302330112233001122   3 , D 12 a = 11111111111111111111111111111111111111111   1 22222222222222222222222222222222222222222   2 00000000000000000001111111111111111111111   1 00000111122222233330000001111122222233333   3 01223012300223301220012330112301123300122   3 , D 12 b = 11111111111111111111111111111111111111111   1 22222222222222222222222222222222222222222   2 22222222222222222223333333333333333333333   3 00011111222222333330000001111112222223333   3 02302233001223012230112230122330112330012   3 , D 13 a = 11111111111111111111111111111111111111111   1 33333333333333333333333333333333333333333   3 00000000000000000001111111111111111111111   1 00011111222223333330000011111222222333333   3 12301233012330012230123300133112233001223   3 , D 13 b = 11111111111111111111111111111111111111111   1 33333333333333333333333333333333333333333   3 22222222222222222222222333333333333333333   3 00000111111222222233333000111122222233333   3 01233001133001123301123023012300112300112   3 .

Appendix A.2. Generator Matrices G5,172, G5,194, G5,215, and G5,236 in Section 3.2

Let G 5 , 172 = ( E 1 ,   E 2 ) , where
E 1 = 10000 02220313122330200013330311323322120001332022303103320202333210021033322320123101222331320   0 01000 02222232311012210101320131312031213223110033312013022113310120133330110002223310031302120   3 00100 00011310333333303301030000000000022022022222222222222222122121111011111000100303303333333   3 00010 11102221101100202303131331120202200311311322322223031022010200113213232233211002001211032   1 00001 00000101111111111110111113313133300300300003030003233222233132221232222222322320323233202   3 , E 2 = 2000021213322132120031113002233333322010011012323223030113102223310210322021   3 3221021313320001113202331220001032123122301100223320030012232100132021011332   2 3333333333333333013313313113101111111111111112121112221212222222222000000000   0 3013222332221311031031020230232201201132311110130101320202002010111231223202   0 3223303020333000230030030320323233133311132113111112131111110111111333001000   0 .
Let G 5 , 194 = ( H 1 ,   H 2 ) , where
H 1 = 10000 22213001230023323032031103312221301012120203203200121121130233112011233331010320322313221   0 01000 22213001103310010310213321133321301103031021021022312212203103112011233331023013011021003   2 00100 10333322111122330011000033222211123222103001122333322110000333333221111000033301112223332   2 00010 01222233000033221100111122333311123222103001122333322110000330000112222333300032221110001   1 00001 00000000000000000000000000000011111111111111111111111111111111111111111111111111111111111   1 , H 2 = 20213202113302113022211300200221312033303222003331231231021100023303203200313123200130021113001131   3 02031313002213002132211300200221303122212333112113013013212233310033203203020210133312203331210020   2 21000330000111122222223333301111100000322211111222233001100003333220033221112333000111033322211220   0 12333003333222211110001111123333322222100033333000011223322221111001122330003222111000122233300331   1 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111   1 .
Let G 5 , 215 = ( K 1 ,   K 2 ,   K 3 ) , where
K 1 = 10000 00030033303333030030000030001131131312222221210010001010303030333333230322220220211211111   2 01000 03210201321313232232322032200031010001103330311001112322130302023222233220023103031031311   0 00100 21011132323001221010232011111133203202201123310213221103130012220110133303331102122230003   2 00010 12211211121311111031010300032202222223230003032232221010303030301101101113311331303302032   0 00001 23321211010132211100233230033310001322312210033020110013121102302233303023311002121232031   1 , K 2 = 1222222121112212110101022020033333333033301130110000202211233333322001113123223223303311001101201   2 1100232120112213333323332320101010001100010001000111110132132333322321011101101002302222322232332   2 3011310113222230030221232133202201103333300002220100331031220100321323102200233211332303202211333   1 3002222121112212333333333331111002202002201123113333030011022222200330003013113113323300220023123   1 0220211003333320302112022332230031122213311100333322013321121100312003003221112030303203122222100   2 , K 3 = 222222222122133213313   1 333231330231211120121   1 032011103333033011021   0 332221321221200120020   0 033003110121211232203   1 .
Let G 5 , 236 = ( L 1 ,   L 2 ,   L 3 ) , where
L 1 = 10000 00120323121113210203300323222200330320323032233311211311113101033300000112201100223202002   1 01000 11231102012231233322322303111133211031213223211133222132223320322001101010021123012102013   0 00100 32310232333302330120201121100010113320123332001032301303220101201023302313212123130313213   2 00010 32211232221130003302132213232232221112023323000132210213221010201300021031031310203121130   2 00001 33010102311131203100333110332223123120102032122200222131001231001233312300023101200102313   2 , L 2 = 1313311333332301122222220323300103330210202210213010310200031100301331031201112332110333303322022   1 1233023011103111101232323212332123322303202213101221021203231130012301210130111230111101120311322   3 0210003310122313202021021302021302202130201110112032200233110013110320312231231103112013320233201   1 1300013200133303203302213130312021020213033301113022200333000011222112031113013320220330022233311   1 1231231133203012330120033323002232311132310002311312021321201132312301022011333010002330012311000   2 , L 3 = 022220202222320313132321013231001111111221   0 022331303221202131230211302120223223223001   2 123102313100322310130112302232332103220102   1 123003213111323122302330131100010231112013   1 133002203112311023323122012132101320003233   2 .

References

  1. Bhandari, M.C.; Garg, M.S. Optimum codes of dimension 3 and 4 over GF (4). IEEE Trans. Inf. Theory 1992, 38, 1562–1567. [Google Scholar] [CrossRef]
  2. Greenough, P.P.; Hill, R. Optimal linear codes over GF (4). Discret. Math. 1994, 125, 187–199. [Google Scholar] [CrossRef]
  3. Bouyukliev, I.; Grassl, M.; Varbanov, Z. New bounds for n4 (k, d) and classification of some optimal codes over GF (4). Discret. Math. 2004, 281, 43–66. [Google Scholar] [CrossRef]
  4. Code Tables: Bounds on the Parameters of Various Types of Codes. 2024. Available online: http://www.codetables.de/ (accessed on 25 March 2024).
  5. Rousseva, A.; Landjev, I. The geometric approach to the existence of some quaternary Griesmer codes. Des. Codes Cryptogr. 2020, 88, 1925–1940. [Google Scholar] [CrossRef]
  6. Kanda, H.; Maruta, T. Nonexistence of some linear codes over the field of order four. Discret. Math. 2018, 341, 2676–2685. [Google Scholar] [CrossRef]
  7. MacWilliams, F.J.; Odlyzko, A.M.; Sloane, N.J.A.; Ward, H.N. Self-dual codes over GF (4). J. Comb. Theory, Ser. A 1978, 25, 288–318. [Google Scholar] [CrossRef]
  8. Huffman, W.C. On the classification and enumeration of self-dual codes. Finite Fields Their. Appl. 2005, 11, 451–490. [Google Scholar] [CrossRef]
  9. Nebe, G.; Rains, E.M.; Sloane, N.J.A. Codes and invariant theory. Math. Nachrichten 2004, 274, 104–116. [Google Scholar] [CrossRef]
  10. Grassl, M.; Gulliver, T.A. On circulant self-dual codes over small fields. Des. Codes Cryptogr. 2009, 52, 57–81. [Google Scholar] [CrossRef]
  11. Calderbank, A.R.; Rains, E.M.; Shor, P.M.; Sloane, N.J.A. Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 1998, 44, 1369–1387. [Google Scholar] [CrossRef]
  12. Bouyukliev, I.; Ostergard, P.R.J. Classification of Self-Orthogonal Codes over F3 and F4. SIAM J. Discret. Math. 2005, 19, 363–370. [Google Scholar] [CrossRef]
  13. Ma, Y.; Zhao, X.; Feng, Y. Optimal Quaternary Self—Orthogonal Codes of Dimensions Two and Three. J. Air Force Eng. Univ.-Nat. Sci. Ed. 2005, 6, 63–66. (In Chinese) [Google Scholar]
  14. Lu, L.; Li, R.; Guo, L.; Fu, Q. Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 2015, 14, 165–182. [Google Scholar] [CrossRef]
  15. Araya, M.; Harada, M.; Saito, K. Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 2019, 66, 2751–2759. [Google Scholar] [CrossRef]
  16. Araya, M.; Harada, M. On the classification of quaternary optimal Hermitian LCD codes. Cryptogr. Commun. 2022, 14, 833–847. [Google Scholar] [CrossRef]
  17. Ren, Y.; Li, R.; Guo, G. New entanglement-assisted quantum codes constructed from Hermitian LCD codes. AIMS Math. 2023, 8, 30875–30881. [Google Scholar] [CrossRef]
  18. Li, R.; Ren, Y.; Song, H.; Liu, Y. On Some Problems of Quaternary Hermitian Self-orthogonal Codes. In Proceedings of the 2023 International Symposium on Coding and Cryptography, Hefei, China, 10 December 2023. [Google Scholar]
  19. Lu, L.; Li, R.; Guo, L. Entanglement-assisted quantum codes from quaternary codes of dimension five. Int. J. Quantum Inf. 2017, 15, 1750017. [Google Scholar] [CrossRef]
  20. Brun, T.; Devetak, I.; Hsieh, M.H. Correcting quantum errors with entanglement. Science 2006, 314, 436–439. [Google Scholar] [CrossRef] [PubMed]
  21. Lai, C.Y.; Brun, T.A.; Wilde, M.M. Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 2014, 13, 957–990. [Google Scholar] [CrossRef]
  22. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
  23. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system I: The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
Table 1. Comparison of HLCD codes.
Table 1. Comparison of HLCD codes.
No.HLCD in [19]Our HLCD CodesNo.HLCD in [19]Our HLCD Codes
1 [ 359 ,   5 ,   266 ] [ 359 ,   5 ,   267 ] 17 [ 466 ,   5 ,   346 ] [ 466 ,   5 ,   347 ]
2 [ 397 ,   5 ,   294 ] [ 397 ,   5 ,   295 ] 18 [ 472 ,   5 ,   350 ] [ 472 ,   5 ,   351 ]
3 [ 400 ,   5 ,   296 ] [ 400 ,   5 ,   297 ] 19 [ 475 ,   5 ,   352 ] [ 475 ,   5 ,   353 ]
4 [ 401 ,   5 ,   297 ] [ 401 ,   5 ,   298 ] 20 [ 476 ,   5 ,   353 ] [ 476 ,   5 ,   354 ]
5 [ 402 ,   5 ,   298 ] [ 402 ,   5 ,   299 ] 21 [ 477 ,   5 ,   354 ] [ 477 ,   5 ,   355 ]
6 [ 417 ,   5 ,   309 ] [ 417 ,   5 ,   310 ] 22 [ 478 ,   5 ,   354 ] [ 478 ,   5 ,   355 ]
7 [ 418 ,   5 ,   310 ] [ 418 ,   5 ,   311 ] 23 [ 479 ,   5 ,   355 ] [ 479 ,   5 ,   356 ]
8 [ 420 ,   5 ,   311 ] [ 420 ,   5 ,   312 ] 24 [ 480 ,   5 ,   356 ] [ 480 ,   5 ,   357 ]
9 [ 421 ,   5 ,   312 ] [ 421 ,   5 ,   313 ] 25 [ 481 ,   5 ,   357 ] [ 481 ,   5 ,   358 ]
10 [ 422 ,   5 ,   313 ] [ 422 ,   5 ,   314 ] 26 [ 482 ,   5 ,   357 ] [ 482 ,   5 ,   359 ]
11 [ 423 ,   5 ,   314 ] [ 423 ,   5 ,   315 ] 27 [ 483 ,   5 ,   358 ] [ 483 ,   5 ,   359 ]
12 [ 440 ,   5 ,   326 ] [ 440 ,   5 ,   327 ] 28 [ 484 ,   5 ,   359 ] [ 484 ,   5 ,   360 ]
13 [ 460 ,   5 ,   341 ] [ 460 ,   5 ,   342 ] 29 [ 485 ,   5 ,   360 ] [ 485 ,   5 ,   361 ]
14 [ 461 ,   5 ,   342 ] [ 461 ,   5 ,   343 ] 30 [ 486 ,   5 ,   361 ] [ 486 ,   5 ,   362 ]
15 [ 464 ,   5 ,   344 ] [ 464 ,   5 ,   345 ] 31 [ 487 ,   5 ,   361 ] [ 487 ,   5 ,   363 ]
16 [ 465 ,   5 ,   345 ] [ 465 ,   5 ,   346 ]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ren, Y.; Li, R.; Song, H. Construction of Hermitian Self-Orthogonal Codes and Application. Mathematics 2024, 12, 2117. https://doi.org/10.3390/math12132117

AMA Style

Ren Y, Li R, Song H. Construction of Hermitian Self-Orthogonal Codes and Application. Mathematics. 2024; 12(13):2117. https://doi.org/10.3390/math12132117

Chicago/Turabian Style

Ren, Yuezhen, Ruihu Li, and Hao Song. 2024. "Construction of Hermitian Self-Orthogonal Codes and Application" Mathematics 12, no. 13: 2117. https://doi.org/10.3390/math12132117

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop