Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli
Abstract
:1. Introduction and Preliminaries
2. A Set of Lemmas
3. Bound of for the Class
4. Bound of for the Class
- (1)
- Assume that . Now, to find points of maxima inside , we calculate the partial derivative of (48) which is possible if) with respect to y, and we have
- (2)
- We next consider the case for the interior of the six faces of .
- (3)
- Now, we are going to find the maxima of on the edges of .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branges, L.D. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Robertson, M.S. Analytic functions star-like in one direction. Am. J. Math. 1936, 58, 465–472. [Google Scholar] [CrossRef]
- Shanmugam, G.; Stephen, B.A.; Babalola, K.O. Third Hankel determinant for alpha-starlike functions. Gulf J. Math. 2014, 2, 107–113. [Google Scholar] [CrossRef]
- Juma, A.R.S.; Al-Fayadh, A.; Vijayalakshmi, S.P.; Sudharsan, T.V. Upper bound on the third hankel determinant for the class of univalent functions using an integral operator. Afr. Mat. 2022, 33, 56. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. The sharp bound of the third Hankel determinant for functions of bounded turning. Boll. Soc. Mat. Mex. 2021, 27, 69. [Google Scholar] [CrossRef]
- Mohamad, D.; Wahid, N.H.A.A. Hankel determinant of logarithmic coefficients for tilted starlike functions with respect to conjugate points. Int. J. Anal. Appl. 2023, 21, 10. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef] [PubMed]
- Noor, K.I.; Saliu, A. Convolution Properties of a Class of Analytic Functions. Earthline J. Math. Sci. 2023, 12, 109–120. [Google Scholar] [CrossRef]
- Arif, M.; Noor, K.I.; Raza, M. Hankel determinant problem of a subclass of analytic functions. J. Inequalities Appl. 2012, 2012, 22. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 2017, 11, 429–439. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Sokół, J. Radius problems in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar]
- Kumar, S.S.; Kumar, V.; Ravichandran, V.; Cho, N.E. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli. J. Inequalities Appl. 2013, 2013, 176. [Google Scholar] [CrossRef]
- Omar, R.; Halim, S.A. Differential subordination properties of Sokół-Stankiewicz starlike functions. Kyungpook Math. J. 2013, 53, 459–465. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequalities Appl. 2013, 2013, 412. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Duren, P.L. Grundlehren der Mathematischen Wissenchaffen. In Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1983; Volume 259. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. C. R. Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Somerville, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, R.; Fayyaz, R.; Breaz, D.; Cotîrlă, L.-I. Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli. Mathematics 2024, 12, 2309. https://doi.org/10.3390/math12152309
Nawaz R, Fayyaz R, Breaz D, Cotîrlă L-I. Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli. Mathematics. 2024; 12(15):2309. https://doi.org/10.3390/math12152309
Chicago/Turabian StyleNawaz, Rubab, Rabia Fayyaz, Daniel Breaz, and Luminiţa-Ioana Cotîrlă. 2024. "Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli" Mathematics 12, no. 15: 2309. https://doi.org/10.3390/math12152309
APA StyleNawaz, R., Fayyaz, R., Breaz, D., & Cotîrlă, L.-I. (2024). Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli. Mathematics, 12(15), 2309. https://doi.org/10.3390/math12152309