Next Article in Journal
Recovery Model of Electric Power Data Based on RCNN-BiGRU Network Optimized by an Accelerated Adaptive Differential Evolution Algorithm
Previous Article in Journal
Fuzzy Stress and Strength Reliability Based on the Generalized Mixture Exponential Distribution
Previous Article in Special Issue
A Parametric Kind of the Degenerate Fubini Numbers and Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generating Functions for Binomial Series Involving Harmonic-like Numbers

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(17), 2685; https://doi.org/10.3390/math12172685
Submission received: 1 August 2024 / Revised: 28 August 2024 / Accepted: 28 August 2024 / Published: 29 August 2024
(This article belongs to the Special Issue Polynomials: Theory and Applications, 2nd Edition)

Abstract

:
By employing the coefficient extraction method, a class of binomial series involving harmonic numbers will be reviewed through three hypergeometric F 1 2 ( y 2 ) -series. Numerous closed-form generating functions for infinite series containing binomial coefficients and harmonic numbers will be established, including several conjectured ones.

1. Introduction and Motivation

Harmonic numbers and their variants have been examined since Euler’s era for more than three centuries and involved in many mathematical fields (cf. [1,2,3,4,5,6]), such as the analysis of algorithms (cf. [7]) in computer science, various topics of number theory (cf. [8,9,10,11]), and combinatorial analysis (cf. [12,13,14]). In this paper, we are going to review a particular class of binomial series (cf. [15,16,17,18]) with a free variable “y” and harmonic-like numbers. In order to proceed smoothly, it is necessary to go over some basic facts about harmonic numbers, the “coefficient extraction” method (cf. [19,20,21]), and classical hypergeometric series.
For the sake of brevity, we shall make use of the following notations throughout the paper for Catalan’s constant and the Riemann zeta function (cf. [22]):
G = k = 1 ( 1 ) k 1 ( 2 k 1 ) 2 and ζ ( m ) = k = 1 1 k m for m > 1 .

1.1. Harmonic Numbers

For λ R and m , n N 0 , the harmonic-like numbers are defined by
H n m ( λ ) = k = 0 n 1 1 ( λ + k ) m , O n m = k = 0 n 1 1 ( 1 + 2 k ) m ; H ¯ n m ( λ ) = k = 0 n 1 ( 1 ) k ( λ + k ) m , O ¯ n m = k = 0 n 1 ( 1 ) k ( 1 + 2 k ) m .
When m = 1 and/or λ = 1 , they will be omitted from these notations. We also record the following simple but useful relations:
H n m ( 1 2 ) = 2 m O n m , H 2 n m = O n m + 2 m H n m ; H ¯ n m ( 1 2 ) = 2 m O ¯ n m , H ¯ 2 n m = O n m 2 m H n m .

1.2. Coefficient Extraction

For n N 0 and an indeterminate x, the shifted factorials are usually defined (cf. Bailey [23] §1.1) by
( x ) 0 = 1 and ( x ) n = x ( x + 1 ) ( x + n 1 ) for n N .
Let [ x m ] ϕ ( x ) stand for the coefficient of x m in the formal power series ϕ ( x ) . Then, the harmonic-like numbers can be expressed as coefficients extracted from factorial quotients:
[ x ] ( 1 + x ) n n ! = H n , [ x 2 ] ( 1 + x ) n n ! = H n 2 H n 2 2 , [ x ] n ! ( 1 x ) n = H n , [ x 2 ] n ! ( 1 x ) n = H n 2 + H n 2 2 , [ x ] ( 1 2 + x ) n ( 1 2 ) n = 2 O n , [ x 2 ] ( 1 2 + x ) n ( 1 2 ) n = 2 ( O n 2 O n 2 ) , [ x ] ( 1 2 ) n ( 1 2 x ) n = 2 O n , [ x 2 ] ( 1 2 ) n ( 1 2 x ) n = 2 ( O n 2 + O n 2 ) .
For a real number λ Z N , it is not difficult to verify that
H n ( λ ) = [ x ] ( λ + x ) n ( λ ) n = [ x ] ( λ ) n ( λ x ) n .
In general, the following formulae hold (cf. Chu [5,21]):
[ x m ] ( λ x ) n ( λ ) n = Ω m H n k ( λ ) and [ x m ] ( λ ) n ( λ x ) n = Ω m H n k ( λ ) ,
where the Bell polynomials (cf. [24] §3.3) are expressed by the multiple sum
Ω m ± H n k ( λ ) = ω ( m ) k = 1 m ± H n k ( λ ) i k i k ! k i k ,
with ω ( m ) standing for the set of m-partitions represented by ( i 1 , i 2 , , i m ) N 0 m subject to the linear condition k = 1 m k i k = m .

1.3. Three F 1 2 ( y 2 ) -Series

By making use of the “coefficient extraction” method, we shall examine three closed formulae for F 1 2 -series (cf. Chu [25]) convergent with | y | < 1 and establish several infinite series identities.
A ( x , y ) F 1 2 x , x 1 2 | y 2 = n = 0 ( x ) n ( x ) n n ! ( 1 2 ) n y 2 n = cos ( 2 x arcsin y ) , B ( x , y ) F 1 2 x , 1 x 1 2 | y 2 = n = 0 ( x ) n ( 1 x ) n n ! ( 1 2 ) n y 2 n = cos ( ( 2 x 1 ) arcsin y ) 1 y 2 , C ( x , y ) F 1 2 x , 1 x 3 2 | y 2 = n = 0 ( x ) n ( 1 x ) n n ! ( 3 2 ) n y 2 n = sin ( ( 2 x 1 ) arcsin y ) ( 2 x 1 ) y .
The above three equalities are analytic in the neighborhood of x = 0 and can be expanded into Maclaurin series. For a real number λ , m N 0 , and W { A , B , C } , we denote by W m ( λ + x , y ) = [ x m ] W ( λ + x , y ) the resulting equality from the coefficients of x m extracted across the equality W ( λ + x , y ) . Then, numerous infinite series identities can be established using the “coefficient extraction method”. The aim of this paper is to utilize the above three series to review the summation formulae involving both the binomial coefficient and harmonic-like numbers.
The rest of the paper will be divided into five sections in accordance with the binomial/multinomial structures. Each section consists of several algebraic formulae for infinite series involving harmonic-like numbers, which can be considered generating functions (cf. Wilf [26]) for binomial sequences, together with the harmonic-like numbers. A number of known results will be recorded for comparison, including several series conjectured by Sun [27,28,29]. In order to assure accuracy, all the displayed equalities are verified numerically through appropriately devised Mathematica commands.

2. Series with the Central Binomial Coefficient 2 n n in the Denominator

This section is devoted to harmonic series with the central binomial coefficient in the denominator.

2.1. Series from A ( x , y )

Since A ( x , y ) can be expanded into a power series of x, the initial coefficients give rise to the following three infinite series identities, where A 4 ( x , y ) can be found in Sun [29] (Equation 1.4).
A 2 ( x , y ) n = 1 ( 2 y ) 2 n n 2 2 n n = 2 arcsin 2 y , A 4 ( x , y ) n = 1 ( 2 y ) 2 n n 2 2 n n H n 1 2 = 2 arcsin 4 y 3 , A 6 ( x , y ) n = 1 ( 2 y ) 2 n n 2 2 n n H n 1 2 2 H n 1 4 = 8 arcsin 6 y 45 .
We remark that these series are examples of the formula discovered by Borwein and Chamberland [30]. Some interesting numerical series are recorded as follows.
  • Two numerical series from A 2 ( x , y ) : φ = 1 + 5 2 ,   φ ¯ = 1 5 2 .
    A 2 ( x , φ 2 ) n = 1 φ 2 n n 2 2 n n = 2 arcsin 2 φ 2 , A 2 ( x , φ ¯ 2 ) n = 1 φ ¯ 2 n n 2 2 n n = 2 arcsin 2 φ ¯ 2 .
    Their linear combination leads to the following identity conjectured by Sun [27] (Page 7):
    n = 1 L 2 n n 2 2 n n = π 2 5 ,
    where the Lucas numbers are given by
    L n + 1 = L n + L n 1 with L 0 = 2 and L 1 = 1
    and can be expressed by Binet’s formula
    L n = φ n + φ ¯ n .
  • Two further numerical series from A 2 ( x , y ) :
    A 2 ( x , 5 φ 2 ) n = 1 5 n φ 2 n n 2 2 n n = 2 arcsin 2 5 φ 2 , A 2 ( x , 5 φ ¯ 2 ) n = 1 5 n φ ¯ 2 n n 2 2 n n = 2 arcsin 2 5 φ ¯ 2 .
    These are refined identities of the following identity conjectured by Sun [27] (Page 7):
    n = 1 V n n 2 2 n n = 2 π 2 5 ,
    where the V-sequence is defined by
    V n + 1 = 5 ( V n V n 1 ) with V 0 = 2 and V 1 = 5
    and can be expressed by Binet’s formula
    V n = ( 5 ) n φ n + ( φ ¯ ) n .
  • Analogous evaluations detected by Sun [28] (Conjectures 10.62 and 10.63):
    n = 1 L 2 n n 2 2 n n H 2 n H n 1 = 41 ζ ( 3 ) + 4 π 2 ln φ 25 , n = 1 V n n 2 2 n n H 2 n H n 1 = 124 ζ ( 3 ) + π 2 ln ( 5 5 φ 6 ) 50 .
  • Numerical series from A 4 ( x , y ) :
    A 4 ( x , 2 2 ) n = 1 2 n H n 1 2 n 2 2 n n = π 4 384 , A 4 ( x , 3 2 ) n = 1 3 n H n 1 2 n 2 2 n n = 2 π 4 243 , A 4 ( x , φ 2 ) n = 1 φ 2 n H n 1 2 n 2 2 n n = 27 π 4 5000 , A 4 ( x , φ ¯ 2 ) n = 1 φ ¯ 2 n H n 1 2 n 2 2 n n = π 4 15000 .
  • Numerical series from A 6 ( x , y ) :
    A 6 ( x , 2 2 ) n = 1 2 n ( H n 1 2 ) 2 H n 1 4 n 2 2 n n = 21 ζ ( 6 ) 512 , A 6 ( x , 3 2 ) n = 1 3 n ( H n 1 2 ) 2 H n 1 4 n 2 2 n n = 56 ζ ( 6 ) 243 , A 6 ( x , φ 2 ) n = 1 φ 2 n ( H n 1 2 ) 2 H n 1 4 n 2 2 n n = 15309 ζ ( 6 ) 125000 , A 6 ( x , φ ¯ 2 ) n = 1 φ ¯ 2 n ( H n 1 2 ) 2 H n 1 4 n 2 2 n n = 21 ζ ( 6 ) 125000 .
  • Particularly for y = 1 2 , we deduce two numerical series
    A 4 ( x , 1 2 ) n = 1 H n 1 2 n 2 2 n n = π 4 1944 , A 6 ( x , 1 2 ) n = 1 H n 1 2 2 H n 1 4 n 2 2 n n = π 6 262440 .
    The former is a combination of the following two formulae (cf. Comtet [24] (Page 89) and Chu [20] (Example 3.8)):
    n = 1 1 n 4 2 n n = 17 π 4 3240 and n = 1 H n 2 n 2 2 n n = 7 π 4 1215 ;
    while for the latter, three refined formulae exist (cf. Chu [20])
    n = 1 7 3 n 4 H n 2 2 n 6 2 n n = 65 π 6 34992 , n = 1 2 n 2 H n 2 n 6 2 n n = 313 π 6 612360 , n = 1 3 n 4 H n 4 1 n 6 2 n n = 163 π 6 136080 .
    It should be pointed out that the last two identities were first found by Bailey et al. [31], and amusingly, conjectured by Sun [32] (Equations 4.6 and 4.7) subsequently.

2.2. Series from B ( x , y )

Considering that B ( x , y ) is a power series of x, the initial coefficients yield the identities below.
B 1 ( x , y ) n = 1 ( 2 y ) 2 n n 2 n n = 2 y arcsin y 1 y 2 , B 3 ( x , y ) n = 1 ( 2 y ) 2 n n 2 n n H n 1 2 = 4 y arcsin 3 y 3 1 y 2 , B 5 ( x , y ) n = 1 ( 2 y ) 2 n n 2 n n H n 1 2 2 H n 1 4 = 8 y arcsin 5 y 15 1 y 2 .
For comparison, we record five sample series conjectured experimentally by Sun [27], where the fourth and fifth series were evaluated by Chu [20].
k = 1 2 k H k k 2 2 k k = 7 ζ ( 3 ) 16 + π 2 8 ln 2 , k = 1 2 k O k k 2 2 k k = 7 ζ ( 3 ) 2 π G , k = 1 3 k ( 1 + 2 k H k ) k 3 2 k k = 2 π 2 3 ln 3 , k = 1 H 2 k + 2 H k k 2 2 k k = 5 ζ ( 3 ) 3 , k = 1 H k 3 k 2 2 k k = ζ ( 5 ) + 2 ζ ( 2 ) ζ ( 3 ) 9 .

2.3. Series from C ( x , y )

By expanding C ( x , y ) into a power series of x, we record the following infinite series identities from the initial coefficients.
C 1 ( x , y ) n = 1 ( 2 y ) 2 n n 2 n n ( 2 n + 1 ) = 2 2 1 y 2 arcsin y y , C 2 ( x , y ) n = 1 ( 2 y ) 2 n n 2 2 n n ( 2 n + 1 ) = 2 arcsin 2 y 4 + 4 1 y 2 arcsin y y , C 3 ( x , y ) n = 1 ( 2 y ) 2 n H n 1 2 n 2 n n ( 2 n + 1 ) = 4 arcsin 2 y 8 4 1 y 2 3 y arcsin 3 y 6 arcsin y , C 4 ( x , y ) n = 1 ( 2 y ) 2 n H n 1 2 n 2 2 n n ( 2 n + 1 ) = 16 8 arcsin 2 y + 2 3 arcsin 4 y + 8 1 y 2 3 y arcsin 3 y 6 arcsin y , C 5 ( x , y ) n = 1 ( 2 y ) 2 n n 2 n n H n 1 2 2 H n 1 4 ( 2 n + 1 ) = 8 3 arcsin 4 y 32 arcsin 2 y + 64 8 1 y 2 15 y 120 arcsin y 20 arcsin 3 y + arcsin 5 y , C 6 ( x , y ) n = 1 ( 2 y ) 2 n n 2 2 n n H n 1 2 2 H n 1 4 ( 2 n + 1 ) = 8 45 arcsin 6 y 16 3 arcsin 4 y + 64 arcsin 2 y 128 + 16 1 y 2 15 y 120 arcsin y 20 arcsin 3 y + arcsin 5 y .

3. Series with the Central Binomial Coefficient 2 n n in the Numerator

This section is devoted to harmonic series with the central binomial coefficient in the numerator.

3.1. Series from A ( 1 2 + x , y )

Since A ( 1 2 + x , y ) can be expanded into a power series of x, the initial coefficients give rise to the following six infinite series identities.
A 0 ( 1 2 + x , y ) n = 0 y 2 2 n 2 n n 1 2 n 1 = 1 y 2 , A 1 ( 1 2 + x , y ) n = 0 y 2 2 n 2 n n 2 n ( 2 n 1 ) 2 = y arcsin y , A 2 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n O n 1 2 2 n 1 1 ( 2 n 1 ) 2 = 1 y 2 arcsin 2 y 2 , A 3 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n n O n 1 2 ( 2 n 1 ) 2 = y arcsin 3 y 12 , A 4 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n ( O n 1 2 ) 2 O n 1 4 2 n 1 2 O n 1 2 ( 2 n 1 ) 2 = 1 y 2 arcsin 4 y 12 , A 5 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n n ( O n 1 2 ) 2 O n 1 4 ( 2 n 1 ) 2 = y arcsin 5 y 120 .

3.2. Series from B ( 1 2 + x , y )

Considering that B ( 1 2 + x , y ) is a power series of x, the initial coefficients yield the identities below, where B 2 ( 1 2 + x , y ) is equivalent to the formula by Sun [29] (Equation 1.5).
B 0 ( 1 2 + x , y ) n = 0 y 2 2 n 2 n n = 1 1 y 2 , B 2 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n O n 2 = arcsin 2 y 2 1 y 2 , B 4 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n ( O n 2 ) 2 O n 4 = arcsin 4 y 12 1 y 2 , B 6 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n ( O n 2 ) 3 3 O n 2 O n 4 + 2 O n 6 = arcsin 6 y 120 1 y 2 .
Unlike these series, there are two similar identities conjectured by Sun [29] (Equations 2.4 and 2.5):
k = 0 2 k k 8 k O k 3 = 35 2 64 ζ ( 3 ) 2 8 π G and k = 0 2 k k 16 k O k 3 = 2 ζ ( 3 ) 3 3 π K 8 .
The former was confirmed by the authors [33] (Theorem 19), while the latter remains unproven.

3.3. Series from C ( 1 2 + x , y )

By expanding C ( 1 2 + x , y ) into a power series of x, we record the following infinite series identities from the initial coefficients, which are particular cases of a more general formula appearing in [30].
C 0 ( 1 2 + x , y ) n = 0 y 2 2 n 2 n n 1 2 n + 1 = arcsin y y , C 2 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n O n 2 2 n + 1 = arcsin 3 y 6 y , C 4 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n ( O n 2 ) 2 O n 4 2 n + 1 = arcsin 5 y 60 y , C 6 ( 1 2 + x , y ) n = 1 y 2 2 n 2 n n ( O n 2 ) 3 3 O n 2 O n 4 + 2 O n 6 2 n + 1 = arcsin 7 y 840 y .
For these identities, many numerical series related to them exist in the literature.
  • Numerical series from C 2 ( 1 2 + x , y ) :
    C 2 ( 1 2 + x , 1 2 ) n = 1 1 16 n 2 n n O n 2 2 n + 1 = π 3 648 , C 2 ( 1 2 + x , 2 2 ) n = 1 1 8 n 2 n n O n 2 2 n + 1 = π 3 192 2 , C 2 ( 1 2 + x , 3 2 ) n = 1 3 16 n 2 n n O n 2 2 n + 1 = π 3 81 3 , C 2 ( 1 2 + x , φ 2 ) n = 1 φ 4 2 n 2 n n O n 2 2 n + 1 = 9 π 3 1000 φ , C 2 ( 1 2 + x , φ ¯ 2 ) n = 1 φ ¯ 4 2 n 2 n n O n 2 2 n + 1 = π 3 φ 3000 .
  • Numerical series from C 4 ( 1 2 + x , y ) :
    C 4 ( 1 2 + x , 1 2 ) n = 1 1 16 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = π 5 233280 , C 4 ( 1 2 + x , i 2 ) n = 1 1 16 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = ln 5 ( 1 + 5 2 ) 30 , C 4 ( 1 2 + x , 2 2 ) n = 1 1 8 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = π 5 30720 2 , C 4 ( 1 2 + x , 3 2 ) n = 1 3 16 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = π 5 7290 3 , C 4 ( 1 2 + x , φ 2 ) n = 1 φ 4 2 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = 81 π 5 10 6 φ , C 4 ( 1 2 + x , φ ¯ 2 ) n = 1 φ ¯ 4 2 n 2 n n 2 n + 1 ( O n 2 ) 2 O n 4 = π 5 φ 3 × 10 6 .
  • The identity corresponding to C 4 ( 1 2 + x , 1 2 ) was refined by the following ones due to Li and Chu [21] (Equations 30 and 32):
    n = 0 1 16 n 2 n n 2 n + 1 3 O n 4 + 2 ( 2 n + 1 ) 4 = 121 π 5 17280 , n = 0 1 16 n 2 n n 2 n + 1 3 ( O n 2 ) 2 + 2 ( 2 n + 1 ) 4 = 1091 π 5 155520 ;
    where the former was experimentally detected by Sun [27] (Equation 1.50).
  • We remark that for the formula corresponding to C 4 ( 1 2 + x , i 2 ) , the following counterpart exists:
    n = 0 2 n n ( 2 n + 1 ) 2 ( 16 ) k 5 O n 4 + 1 ( 2 n + 1 ) 4 = 7 π 6 7200 ,
    which was conjectured by Sun [28] (Conjecture 10.74) and confirmed in [5] (Equation 7).
  • For comparison, we record below variant series involving skew harmonic numbers in odd order, conjectured by Sun [27,28] and evaluated by Li and Chu [5,21]:
    Sun [27] (Equation 1.43) and Li–Chu [21] (Equation 25):
    n = 0 2 n n O n + 1 3 ( 2 n + 1 ) 16 k = 5 π 18 ζ ( 3 ) .
    Sun [28] (Conjecture 10.71) and Li–Chu [5] (Equation 6):
    n = 0 2 n n ( 2 n + 1 ) 2 ( 16 ) k 5 O n + 1 3 + 1 ( 2 n + 1 ) 3 = π 2 2 ζ ( 3 ) .
    Sun [27] (Equation 1.53) and Li–Chu [21] (Equation 35):
    n = 0 2 n n ( 2 n + 1 ) 16 k 33 O n + 1 5 + 4 ( 2 n + 1 ) 5 = 35 π 3 288 ζ ( 3 ) + 1003 π 96 ζ ( 5 ) .
    Sun [27] (Equation 1.56) and Li–Chu [21] (Equation 34):
    n = 0 2 n n ( 2 n + 1 ) 3 16 k 33 O n + 1 3 + 8 ( 2 n + 1 ) 3 = 245 π 3 216 ζ ( 3 ) 49 π 144 ζ ( 5 ) .

4. Series Containing the Binomial Coefficient 3 n n

This section is devoted to harmonic series with the binomial coefficient 3 n n . By integrating Lambert’s series and manipulating the cubic transformations for the F 2 3 -series, the authors evaluated several similar series in a recent paper [34]. Adegoke–Frontczak–Goy [35] evaluated different series without harmonic numbers.

4.1. Series from A ( 1 3 + x , y )

Since A ( 1 3 + x , y ) can be expanded into a power series of x, the initial coefficients give rise to the following three infinite series identities.
A 0 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n 1 3 n 1 = cos ( 2 arcsin y 3 ) , A 1 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n ( 1 3 ) H n ( 2 3 ) 3 n 1 + 9 n ( 3 n 1 ) 2 = 2 arcsin y sin ( 2 arcsin y 3 ) , A 2 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n 2 ( 1 3 ) + H n 2 ( 2 3 ) H n ( 1 3 ) H n ( 2 3 ) 2 2 ( 3 n 1 ) 9 n [ H n 1 3 ) H n ( 2 3 ) ( 3 n 1 ) 2 27 n ( 3 n 1 ) 3 = 2 arcsin 2 y cos ( 2 arcsin y 3 ) .

4.2. Series from B ( 1 3 + x , y )

Considering that B ( 1 3 + x , y ) is a power series of x, the initial coefficients yield the identities below.
B 0 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n = cos ( arcsin y 3 ) 1 y 2 , B 1 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n ( 1 3 ) H n ( 2 3 ) = 2 arcsin y sin ( arcsin y 3 ) 1 y 2 , B 2 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n 2 ( 1 3 ) + H n 2 ( 2 3 ) H n ( 1 3 ) H n ( 2 3 ) 2 = 4 arcsin 2 y cos ( arcsin y 3 ) 1 y 2 .

4.3. Series from C ( 1 3 + x , y )

By expanding C ( 1 3 + x , y ) into a power series of x, we record the following infinite series identities from the initial coefficients.
C 0 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n 1 2 n + 1 = 3 sin ( arcsin y 3 ) y , C 1 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n ( 1 3 ) H n ( 2 3 ) 2 n + 1 = 18 y sin arcsin y 3 6 y arcsin y cos arcsin y 3 , C 2 ( 1 3 + x , y ) n = 0 4 y 2 27 n 3 n n H n 2 ( 1 3 ) + H n 2 ( 2 3 ) H n ( 1 3 ) H n ( 2 3 ) 2 2 n + 1 = 12 y arcsin 2 y 18 sin arcsin y 3 + 72 y arcsin y cos arcsin y 3 .

5. Series Containing the Central Binomial Coefficient 4 n 2 n

This section is devoted to harmonic series with the central binomial coefficient 4 n 2 n .

5.1. Series from A ( 1 4 + x , y )

Since A ( 1 4 + x , y ) can be expanded into a power series of x, the initial coefficients give rise to the following three infinite series identities.
A 0 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n 1 4 n 1 = 1 + 1 y 2 2 , A 1 ( 1 4 + x , y ) n = 1 y 2 16 n 4 n 2 n O ¯ 2 n 1 4 n 1 + 1 4 n 1 = y arcsin y 2 2 1 + 1 y 2 , A 2 ( 1 4 + x , y ) n = 1 y 2 16 n 4 n 2 n O 2 n 1 2 O ¯ 2 n 1 2 4 n 1 2 O ¯ 2 n 1 4 n 1 = arcsin 2 y 1 + 1 y 2 4 2 .

5.2. Series from B ( 1 4 + x , y )

Considering that B ( 1 4 + x , y ) is a power series of x, the initial coefficients yield the identities below.
B 0 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n = 1 + 1 y 2 2 1 y 2 , B 1 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n O ¯ 2 n = y arcsin y 2 2 1 y 2 1 + 1 y 2 , B 2 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n O 2 n 2 O ¯ 2 n 2 = arcsin 2 y 1 + 1 y 2 4 2 1 y 2 .
Among these identities, Sun [29] (Remark 2.8) recorded an equivalent formula for B 0 ( 1 4 + x , y ) and conjectured the following counterpart for B 1 ( 1 4 + x , y ) (see [29] Equation 2.16):
k = 0 x ( 1 x ) 4 k 4 k 2 k O 2 k O k = 1 x 2 ( 2 x 1 ) ln ( 1 x ) .

5.3. Series from C ( 1 4 + x , y )

By expanding C ( 1 4 + x , y ) into a power series of x, we record the following infinite series identities from the initial coefficients.
C 0 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n 1 2 n + 1 = 2 1 + 1 y 2 , C 1 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n O ¯ 2 n 2 n + 1 = 2 y 1 + 1 y 2 arcsin y y 2 1 + 1 y 2 , C 2 ( 1 4 + x , y ) n = 0 y 2 16 n 4 n 2 n O 2 n 2 O ¯ 2 n 2 2 n + 1 = 8 y 4 1 + 1 y 2 arcsin y y arcsin 2 y 2 y 2 1 + 1 y 2 .

6. Series Involving Trinomial/Binomial Quotient 6 n n , 2 n , 3 n / 2 n n

This section is devoted to harmonic series with a trinomial/binomial quotient.

6.1. Series from A ( 1 6 + x , y )

Since A ( 1 6 + x , y ) can be expanded into a power series of x, the initial coefficients give rise to the following three infinite series identities.
A 0 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n 1 6 n 1 = cos ( arcsin y 3 ) , A 1 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 1 6 H n 5 6 6 n 1 + 36 n ( 6 n 1 ) 2 = 2 arcsin y sin ( arcsin y 3 ) , A 2 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 2 1 6 + H n 2 5 6 H n 1 6 H n 5 6 2 2 ( 6 n 1 ) 36 n [ H n 1 6 ) H n ( 5 6 ) ( 6 n 1 ) 2 216 n ( 6 n 1 ) 3 = 2 arcsin 2 y cos ( arcsin y 3 ) .

6.2. Series from B ( 1 6 + x , y )

Considering that B ( 1 6 + x , y ) is a power series of x, the initial coefficients yield the identities below.
B 0 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n = cos ( 2 arcsin y 3 ) 1 y 2 , B 1 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 1 6 H n 5 6 = 2 arcsin y sin ( 2 arcsin y 3 ) 1 y 2 , B 2 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 2 1 6 + H n 2 5 6 H n 1 6 H n 5 6 2 = 4 arcsin 2 y cos ( 2 arcsin y 3 ) 1 y 2 .

6.3. Series from C ( 1 6 + x , y )

By expanding C ( 1 6 + x , y ) into a power series of x, we record the following infinite series identities from the initial coefficients.
C 0 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n 1 2 n + 1 = 3 sin ( 2 arcsin y 3 ) 2 y , C 1 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 1 6 H n 5 6 2 n + 1 = 9 2 y sin 2 arcsin y 3 3 y arcsin y cos 2 arcsin y 3 , C 2 ( 1 6 + x , y ) n = 0 y 2 108 n 6 n n , 2 n , 3 n 2 n n H n 2 1 6 + H n 2 5 6 H n 1 6 H n 5 6 2 2 n + 1 = 18 arcsin y cos 2 arcsin y 3 + 6 arcsin 2 y sin 2 arcsin y 3 27 sin 2 arcsin y 3 y .

7. Concluding Remarks

By means of the “coefficient extraction” method, we succeeded in deriving several algebraic formulae for harmonic series containing a free variable y. This fact is remarkable since almost all of the binomial series conjectured by Sun [27,28,29] are numerical series without variables.

7.1. General Forms of Power Series Expansions

For simplicity, throughout the paper, we examined Maclaurin polynomials only up to x 6 for three functions A ( x , y ) , B ( x , y ) , and C ( x , y ) . In fact, it is possible to expand these functions to higher degrees. Here, we record three examples as representatives. The remaining ones can be determined similarly.
  • Coefficient of x 2 m + 2 in A ( x , y ) (general form of Section 2.1):
    n = 1 ( 2 y ) 2 n 2 n n n 2 Ω m H n 1 2 k = ( 1 ) m ( 2 arcsin y ) 2 m + 2 ( 2 m + 2 ) ! .
  • Coefficient of x 2 m in B ( 1 2 + x , y ) (general form of Section 3.2):
    n = 0 2 n n y 2 2 n Ω m H n 2 k 1 2 = ( 1 ) m ( 2 arcsin y ) 2 m ( 2 m ) ! 1 y 2 .
  • Coefficient of x m in C ( 1 3 + x , y ) (general form of Section 4.3):
    n = 0 3 n n 2 n + 1 4 y 2 27 n = 0 m ( 1 ) Ω H n k 1 3 Ω m H n k 2 3 = 3 y sin arcsin y 3 k = 0 m 2 ( 1 ) k ( 2 k ) ! ( 2 arcsin y ) 2 k 6 m 2 k + 18 y cos arcsin y 3 k = 1 m 2 ( 1 ) k ( 2 k 1 ) ! ( 2 arcsin y ) 2 k 1 6 m 2 k .

7.2. Linearly Combined Series

Some of our series can be combined further to produce closed formulae for simpler series.
  • A 2 ( 1 2 + x , y ) + A 1 ( 1 2 + x , y ) A 0 ( 1 2 + x , y )
    n = 1 y 2 2 n 2 n n O n 1 2 2 n 1 = y arcsin y 1 + 1 y 2 2 2 arcsin 2 y .
  • A 1 ( 1 4 + x , y ) A 0 ( 1 4 + x , y )
    n = 1 y 2 16 n 4 n 2 n O ¯ 2 n 1 4 n 1 = 1 + 1 y 2 2 1 + y arcsin y 8 1 + 1 y 2 .
  • 2 A 3 ( 1 2 + x , y ) A 2 ( 1 2 + x , y ) A 1 ( 1 2 + x , y ) + A 0 ( 1 2 + x , y )
    n = 1 y 2 2 n 2 n n O n 1 2 ( 2 n 1 ) 2 = 1 y arcsin y + y arcsin 3 y 6 1 y 2 2 2 arcsin 2 y .
  • A 2 ( 1 4 + x , y ) + 2 A 1 ( 1 4 + x , y ) 2 A 0 ( 1 4 + x , y )
    n = 1 y 2 16 n 4 n 2 n O 2 n 1 2 O ¯ 2 n 1 2 4 n 1 = 2 1 + 1 y 2 + y arcsin y 2 1 + 1 y 2 2 arcsin 2 y 1 + 1 y 2 4 2 .
  • A 4 ( 1 2 + x , y ) + 4 A 3 ( 1 2 + x , y ) 2 A 2 ( 1 2 + x , y ) 2 A 2 ( 1 2 + x , y ) 2 A 1 ( 1 2 + x , y ) + 2 A 0 ( 1 2 + x , y )
    n = 1 y 2 2 n 2 n n ( O n 1 2 ) 2 O n 1 4 2 n 1 = 2 2 y arcsin y + y arcsin 3 y 3 1 y 2 12 24 12 arcsin 2 y + arcsin 4 y .
  • 2 A 5 ( 1 2 + x , y ) A 4 ( 1 2 + x , y ) 4 A 3 ( 1 2 + x , y ) + 2 A 2 ( 1 2 + x , y ) + 2 A 1 ( 1 2 + x , y ) 2 A 0 ( 1 2 + x , y )
    n = 1 y 2 2 n 2 n n ( O n 1 2 ) 2 O n 1 4 ( 2 n 1 ) 2 = 2 y arcsin y y arcsin 3 y 3 + y arcsin 5 y 60 + 1 y 2 12 24 12 arcsin 2 y + arcsin 4 y .

7.3. Further Contiguous Series

Besides the three series A ( x , y ) , B ( x , y ) and C ( x , y ) examined in this paper, several contiguous series were evaluated by Chu [25]. For instance, the formula displayed in [25] (Corollary 15) can be reproduced as
Λ ( x , y ) = F 1 2 1 + x , 1 x 5 2 | y 2 = n = 0 ( 1 + x ) n ( 1 x ) n n ! ( 5 2 ) n y 2 n = 3 cos ( 2 x arcsin y ) y 2 ( 1 4 x 2 ) 3 1 y 2 sin ( 2 x arcsin y ) 2 x y 3 ( 1 4 x 2 ) .
Three initial coefficients of the Maclaurin series in x are recorded as follows:
Λ 0 ( x , y ) n = 0 ( 2 y ) 2 n 2 n n ( 2 n + 1 ) ( 2 n + 3 ) = 1 y 2 1 y 2 y 3 arcsin y , Λ 2 ( x , y ) n = 0 ( 2 y ) 2 n H n 2 2 n n ( 2 n + 1 ) ( 2 n + 3 ) = 2 y 2 arcsin 2 y 2 + 2 1 y 2 3 y 3 6 arcsin y arcsin 3 y , Λ 4 ( x , y ) n = 0 ( 2 y ) 2 n ( H n 2 ) 2 H n 4 2 n n ( 2 n + 1 ) ( 2 n + 3 ) = 4 ( 24 12 arcsin 2 y + arcsin 4 y ) 3 y 2 4 1 y 2 15 y 3 120 arcsin y 20 arcsin 3 y + arcsin 5 y .
More identities of a similar nature can be derived. Interested readers may make further explorations.

Author Contributions

Investigation, writing and editing, C.L.; writing—review and editing, supervision, W.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Choi, J. Certain summation formulas involving harmonic numbers and generalized harmonic numbers. Appl. Math. Comput. 2011, 218, 734–740. [Google Scholar] [CrossRef]
  2. Frontczak, R. Binomial Sums with Skew-Harmonic Numbers. Palest. J. Math. 2021, 10, 756–763. [Google Scholar]
  3. Furdui, O. Series involving products of two harmonic numbers. Math. Mag. 2011, 84, 371–377. [Google Scholar] [CrossRef]
  4. Jung, M.Y.; Cho, J.; Choi, J. Euler sums evaluable from integrals. Commun. Korean Math. Soc. 2004, 19, 545–555. [Google Scholar] [CrossRef]
  5. Li, C.L.; Chu, W. Series of Convergence Rate -1/4 Containing Harmonic Numbers. Axioms 2023, 12, 513. [Google Scholar] [CrossRef]
  6. Vǎlean, C.I.; Furdui, O. Reviving the quadratic series of Au-Yeung. J. Class. Anal. 2015, 6, 113–118. [Google Scholar] [CrossRef]
  7. Greene, D.H.; Knuth, D.E. Mathematics for the Analysis of Algorithms, 2nd ed.; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Stuttgart, Germany, 1982. [Google Scholar]
  8. Chen, K.W. Generalized harmonic numbers and Euler sums. Int. J. Number Theory 2017, 13, 513–528. [Google Scholar] [CrossRef]
  9. Genčev, M. Binomial sums involving harmonic numbers. Math. Slovaca 2011, 61, 21–226. [Google Scholar] [CrossRef]
  10. Lehmer, D.H. Interesting series involving the central binomial coefficient. Amer. Math. Mon. 1985, 92, 449–457. [Google Scholar] [CrossRef]
  11. Zucker, I.J. On the series k = 1 ( 2 k k ) 1 k n . J. Number Theory 1985, 20, 92–102. [Google Scholar] [CrossRef]
  12. Adegoke, K.; Frontczak, R.; Goy, T. Combinatorial sums, series and integrals involving odd harmonic numbers. arXiv 2024, arXiv:2401.02470v1. [Google Scholar]
  13. Chen, K.W.; Chen, Y.H. Infinite series containing generalized harmonic functions. Notes Number Theory Discret. Math. 2020, 26, 85–104. [Google Scholar] [CrossRef]
  14. Choi, J. Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abstr. Appl. Anal. 2014, 2014, 501906. [Google Scholar] [CrossRef]
  15. Boyadzhiev, K.N. Series with central binomial coefficients, Catalan numbers, and harmonic numbers. J. Integer. Seq. 2012, 15, 12.1.7. [Google Scholar]
  16. Chen, H. Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J. Integer. Seq. 2016, 19, 16.1.5. [Google Scholar]
  17. Choi, J. Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 2013, 2013, 49. [Google Scholar] [CrossRef]
  18. Elsner, C. On sums with binomial coefficient. Fibonacci Quart. 2005, 43, 31–45. [Google Scholar]
  19. Chu, W. Hypergeometric series and the Riemann Zeta function. Acta Arith. 1997, 82, 103–118. [Google Scholar] [CrossRef]
  20. Chu, W. Further Apéry–like series for Riemann zeta function. Math. Notes 2021, 109, 136–146. [Google Scholar] [CrossRef]
  21. Li, C.L.; Chu, W. Infinite Series about Harmonic Numbers Inspired by Ramanujan–Like Formulae. Electron. Res. Arch. 2023, 31, 4611–4636. [Google Scholar] [CrossRef]
  22. Apostol, T.M. Hurwitz zeta function. In NIST Handbook of Mathematical Functions; Olver, F.W.J., Boisvert, R.F., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
  23. Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
  24. Comtet, L. Advanced Combinatorics; Holland: Dordrecht, The Netherlands, 1974. [Google Scholar]
  25. Chu, W. Trigonometric expressions for Gaussian 2F1-series. Turk. J. Math. 2019, 43, 1823–1836. [Google Scholar] [CrossRef]
  26. Wilf, H.S. Generatingfunctionology, 2nd ed.; Academic Press Inc.: London, UK, 1994. [Google Scholar]
  27. Sun, Z.-W. List of conjectural series for powers of π and other constants. arXiv 2014, arXiv:1102.5649v47. [Google Scholar]
  28. Sun, Z.-W. New Conjectures in Number Theory and Combinatorics; Harbin Institute of Technology: Harbin, China, 2021. (In Chinese) [Google Scholar]
  29. Sun, Z.-W. Series with summands involving harmonic numbers. arXiv 2023, arXiv:2210.07238v8. [Google Scholar]
  30. Borwein, J.M.; Chamberland, M. Integer Powers of Arcsin. Int. J. Math. Math. Sci. 2007, 2007, 19381. [Google Scholar] [CrossRef]
  31. Bailey, D.H.; Borwein, J.M.; Bradley, D.M. Experimental determination of Ap’ery-like identities for ζ(2n+2). Exp. Math. 2006, 15, 281–289. [Google Scholar] [CrossRef]
  32. Sun, Z.-W. New series for some special values of L-functions. Nanjing Univ. J. Math. Biquarterly 2015, 32, 189–218. [Google Scholar]
  33. Li, C.L.; Chu, W. Binomial Series Involving Harmonic-like Numbers. Axioms 2024, 13, 162. [Google Scholar] [CrossRef]
  34. Li, C.L.; Chu, W. Remarkable series concerning ( 3 n n ) and harmonic numbers in numerators. AIMS Math. 2024, 9, 17234–17258. [Google Scholar] [CrossRef]
  35. Adegoke, K.; Frontczak, R.; Goy, T. On some series involving the binomial coefficients ( 3 n n ) . Notes Number Theory Discret. Math. 2024, 30, 319–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, C.; Chu, W. Generating Functions for Binomial Series Involving Harmonic-like Numbers. Mathematics 2024, 12, 2685. https://doi.org/10.3390/math12172685

AMA Style

Li C, Chu W. Generating Functions for Binomial Series Involving Harmonic-like Numbers. Mathematics. 2024; 12(17):2685. https://doi.org/10.3390/math12172685

Chicago/Turabian Style

Li, Chunli, and Wenchang Chu. 2024. "Generating Functions for Binomial Series Involving Harmonic-like Numbers" Mathematics 12, no. 17: 2685. https://doi.org/10.3390/math12172685

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop