Next Article in Journal
Decentralized Adaptive Event-Triggered Fault-Tolerant Cooperative Control of Multiple Unmanned Aerial Vehicles and Unmanned Ground Vehicles with Prescribed Performance under Denial-of-Service Attacks
Previous Article in Journal
The Degree Energy of a Graph
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multivariate Perturbed Hyperbolic Tangent-Activated Singular Integral Approximation

by
George A. Anastassiou
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
Mathematics 2024, 12(17), 2700; https://doi.org/10.3390/math12172700
Submission received: 12 August 2024 / Revised: 26 August 2024 / Accepted: 29 August 2024 / Published: 29 August 2024

Abstract

:
Here we study the quantitative multivariate approximation of perturbed hyperbolic tangent-activated singular integral operators to the unit operator. The engaged neural network activation function is both parametrized and deformed, and the related kernel is a density function on R N . We exhibit uniform and L p , p 1 approximations via Jackson-type inequalities involving the first L p modulus of smoothness, 1 p . The differentiability of our multivariate functions is covered extensively in our approximations. We continue by detailing the global smoothness preservation results of our operators. We conclude the paper with the simultaneous approximation and the simultaneous global smoothness preservation by our multivariate perturbed activated singular integrals.

1. Introduction

The classic theory of univariate approximation by singular integral operators is well-documented in the monograph [1]. The corresponding multivariate theory is also extensively presented in the monograph [2]. Earlier important works that motivate us are [3,4,5]. So, inspired by all of the above we attempt to expose a new theory: the multivariate approximation by activated singular integral operators. In this case, the kernel comes from a multivariate neural network activation function, and the parametrized and deformed hyperbolic tangent function. In recent intense mathematical activity, neural networks play a leading role in solving numerically univariate and multivariate differential equations, so multivariate activated singular integrals will play a central role.
What is surprising here is the use of the reverse process from applied mathematics to theoretical ones, which is very rare.
So, here we present multivariate pointwise and uniform and L p , p 1 approximations. We continue by detailing the global smoothness preservation property by our operators. We conclude with the simultaneous treatment of all of these. This is a seminal article, as it is the first of its kind. Other inspiring sources have been the articles [6,7,8,9,10,11,12,13,14,15].

2. Background

(I) Upon uniform approximation, see [2], Ch. 1.
Here, r N , m Z + ; we define
α j : = α j , r m : = 1 r j r j j m , if j = 1 , 2 , , r , 1 j = 1 r 1 r j r j j m , if j = 0 .
and
δ k : = δ k , r m : = j = 0 r α j , r m j k , k = 1 , 2 , , m N .
See that
j = 0 r α j , r m = 1 ,
and
j = 1 r 1 r j r j = 1 r r 0 .
Let μ ξ n be a probability Borel measure on R N , N 1 , ξ n > 0 , n N .
We now define the multiple smooth singular integral operators
θ n f ; x 1 , , x N : = θ r , n m f ; x 1 , , x N : =
j = 0 r α j , r m R N f x 1 + s 1 j , x 2 + s 2 j , , x N + s N j d μ ξ n s ,
where s : = s 1 , , s N , x : = x 1 , , x N R N ;   n , r Z , m Z + , f : R N R is a Borel measurable function, and also ξ n n N is a bounded sequence of positive real numbers.
The operators θ r , n m are not in general positive, and they preserve the constant functions in N variables.
We need
Definition 1. 
Let f C B R N , the space of all bounded and continuous functions on R N . Then, the rth multivariate modulus of smoothness of f is given by
ω r f ; h : = sup u 1 2 + + u N 2 h Δ u 1 , u 2 , , u N r f < , h > 0 ,
where · is the sup-norm and
Δ u r f x : = Δ u 1 , u 2 , , u N r f x 1 , , x N =
j = 0 r 1 r j r j f x 1 + j u 1 , x 2 + j u 2 , , x N + j u N .
Let m N and let f C m R N .
Assume that all partial derivatives of f of order m are bounded, i.e.,
m f · , · , , · x 1 α 1 x N α N < ,
for all α i Z + , i = 1 , , N ;   i = 1 N α i = m .
We need
Theorem 1. 
Let m C m R N , N 1 , x R N . Assume m f · , · , , · x 1 α 1 x N α N < , for all α i Z + ,   i = 1 , , N ;   α : = i = 1 N α i = m ,   r N .
Let μ ξ n be a Borel probability measure on R N , for ξ n > 0 , ξ n n N bounded sequence.
Assume that for all α : = α 1 , , α N , α i Z + ,   i = 1 , , N ;   α : = i = 1 N α i = m we have
u ξ n : = R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s < .
For j ˜ = 1 , , m , and α : = α 1 , , α N , α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n : = c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s 1 , , s N .
Then
(i) 
E r , n m x : = θ r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α 1 , , α N 0 α = j ˜ c α , n , j ˜ f α x i = 1 N α i !
α 1 , , α N 0 α = m ω r f α , ξ n i = 1 N α i ! R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s ,
x R N ,
(ii) 
E r , n m R . H . S . 11 .
Given that ξ n 0 , as n and u ξ n is uniformly bounded, then we obtain E r , n m 0 with rates.
(iii) 
It holds also that
θ r , n m f f
j ˜ = 1 m δ j ˜ , r m α 1 , , α N 0 α = j ˜ c α , n , j ˜ f α i = 1 N α i ! + R . H . S . ( 11 ) ,
given that f α < , for all α : α = j ˜ , j ˜ = 1 , , m . Furthermore, as ξ n 0 , when n , assuming that c α , n , j ˜ 0 , while u ξ n is uniformly bounded, we conclude
θ r , n m f f 0 ,
with rates.
Theorem 2. 
Let f C B R N , N 1 . Then
θ r , n 0 f f R N 1 + s 2 ξ n r d μ ξ n s ω r f , ξ n .
under the assumption
Φ ξ n : = R N 1 + s 2 ξ n r d μ ξ n s < .
As n and ξ n 0 , given that Φ ξ n are uniformly bounded and f is uniformly continuous, we obtain
θ r , n 0 f f 0 ,
with rates.
(II) On L p , p 1 , approximation, see [2], Ch. 2.
Here, we deal with f C m R N , m Z + , with f α L p R N , α = m Z + , p 1 ; where f α denotes the mixed partial j ˜ f · , , · x 1 α 1 x N α N , α i Z + , i = 1 , , N : α : = i = 1 N α i = j ˜ , j ˜ = 1 , , m .
We need
Definition 2. 
We call
Δ u r f x : = Δ u 1 , u 2 , , u N r f x 1 , , x N : =
j = 0 r 1 r j r j f x 1 + j u 1 , x 2 + j u 2 , , x N + j u N .
Let p 1 , the modulus of smoothness of order r is given by
ω r f ; h p : = sup u 2 h Δ u r f p ,
h > 0 .
The following comes from ([16], Ch. 25).
Theorem 3. 
Let f C m R N , m N , N 1 , with f α L p R N ,   α = m , x R N . Let p , q > 1 : 1 p + 1 q = 1 . Here, μ ξ n is a Borel probability measure on R N for ξ n > 0 , ξ n n N bounded sequence. Assume for all α : = α 1 , , α N ,   α i Z + , i = 1 , , N ,   α : = i = 1 N α i = m that we have
R N i = 1 N s i α i 1 + s 2 ξ n r p d μ ξ n s < .
For j ˜ = 1 , , m , and α : = α 1 , , α N ,   α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s .
Then
E r , n m p = θ r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ f α x i = 1 N α i ! p , x
N m / ( m 1 ) ! 1 q m 1 p q m 1 + 1 1 q α = m 1 i = 1 N α i ! ·
R N i = 1 N s i α i 1 + s 2 ξ n r p d μ ξ n s ω r f α , ξ n p p 1 p .
As n and ξ n 0 , by (22), we obtain E r , n m p 0 with rates.
We also obtain, by (22),
θ r , n m f ; x f x p , x
j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ i = 1 N α i ! f α p + R . H . S . ( 22 ) ,
given that f α p < ,   α = j ˜ , j ˜ = 1 , , m .
Assuming that c α , n , j ˜ 0 , ξ n 0 , as n , we obtain θ r , n m f f p 0 , that is θ r , n m I the unit operator, in L p norm, with rates.
Inequality (22) provides a correction in the constants of the inequality in (Theorem 4 in [2], p. 25).
In particular, we have
Theorem 4. 
Let f C R N L p R N ; N 1 ; p , q > 1 : 1 p + 1 q = 1 . Assume μ ξ n probability Borel measures on R N , ξ n n N > 0 and bounded. Also suppose
R N 1 + s 2 ξ n r p d μ ξ n s < .
Then
θ r , n 0 f f p
R N 1 + s 2 ξ n r p d μ ξ n s 1 p ω r f , ξ n p .
As ξ n 0 , when n , we obtain θ r , n 0 f f p 0 , i.e., θ r , n 0 I , the unit operator, in L p norm.
Next, we mention
Theorem 5. 
Let f C m R N , m , N N , with f α L 1 R N ,   α = m , x R N . Here, μ ξ n is a Borel probability measure on R N for ξ n > 0 , ξ n n N is a bounded sequence. Assume for all α : = α 1 , , α N ,   α i Z + , i = 1 , , N ,   α : = i = 1 N α i = m that we have
R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s < .
For j ˜ = 1 , , m , and α : = α 1 , , α N ,   α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s .
Then
E r , n m 1 = θ r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ f α x i = 1 N α i ! 1 , x
α = m 1 i = 1 N α i ! ω r f α , ξ n 1 R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s .
As ξ n 0 , we obtain E r , n m 1 0 with rates.
From (28), we obtain
θ r , n m f f 1
j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ i = 1 N α i ! f α 1 + R . H . S . ( 28 ) ,
given that f α 1 < ,   α = j ˜ , j ˜ = 1 , , m .
As n , assuming ξ n 0 and c α , n , j ˜ 0 , we obtain θ r , n m f f 1 0 , that is θ r , n m I in L 1 norm, with rates.
Theorem 6. 
Let f C R N L 1 R N , N 1 . Assume μ ξ n probability Borel measures on R N , ξ n n N > 0 and bounded. Also suppose
R N 1 + s 2 ξ n r d μ ξ n s < .
Then
θ r , n 0 f f 1
R N 1 + s 2 ξ n r d μ ξ n s ω r f , ξ n 1 .
As ξ n 0 , we obtain θ r , n 0 I in L 1 norm.
(III) Global smoothness and simultaneous approximation ([2], Ch. 3).
Denoted by
ω m f ; h = ω m f , h .
We mention the following general global smoothness preservation result
Theorem 7. 
We suppose θ r , n m ˜ f ; x R , ∀ x R . Let h > 0 , f C R N , N 1 .
(i) 
Assume ω m f , h < . Then
ω m θ r , n m ˜ f , h j ˜ = 0 r α j ˜ , r m ˜ ω m f , h .
(ii) 
Assume f C R N L 1 R N . Then
ω m θ r , n m ˜ f , h 1 j ˜ = 0 r α j ˜ , r m ˜ ω m f , h 1 .
(iii) 
Assume f C R N L p R N , p > 1 . Then
ω m θ r , n m ˜ f , h p j ˜ = 0 r α j ˜ , r m ˜ ω m f , h p .
We need
Theorem 8. 
Let f C l R N , l , N N . Here μ ξ n is a Borel probability measure on R N ,   ξ n > 0 , ξ n n N a bounded sequence. Let β : = β 1 , , β N , β i Z + , i = 1 , , N ;   β : = i = 1 N β i = l . Here, f x + s j , x , s R N , is μ ξ n -integrable with reference to s, for j = 1 , , r . There exist μ ξ n -integrable functions h i 1 , j ,   h β 1 , i 2 , j ,   h β 1 , β 2 , i 3 , j , , h β 1 , β 2 , , β N 1 , i N , j 0 ( j = 1 , , r ) on R N , such that
i 1 f x + s j x 1 i 1 h i 1 , j s , i 1 = 1 , , β 1 ,
β 1 + i 2 f x + s j x 2 i 2 x 1 β 1 h β 1 , i 2 , j s , i 2 = 1 , , β 2 ,
β 1 + β 2 + + β N 1 + i N f x + s j x N i N x N 1 β N 1 x 2 β 2 x 1 β 1 h β 1 , β 2 , , β N 1 , i N , j s , i N = 1 , , β N ,
x , s R N .
Then, both of the following exist, and
θ r , n m ˜ f ; x β = θ r , n m ˜ f β ; x .
We detail the simultaneous global smoothness results.
Theorem 9. 
Let h > 0 and assumptions of Theorem 8 are valid. Here, γ = 0 , β , ( 0 = 0 , , 0 ).
(i) 
Assume ω m f γ , h < . Then
ω m θ r , n m ˜ f γ , h j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h .
(ii) 
Additionally, assume f γ L 1 R N . Then
ω m θ r , n m ˜ f γ , h 1 j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h 1 .
(iii) 
Additionally, assume f γ L p R N , p > 1 . Then
ω m θ r , n m ˜ f γ , h p j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h p .
Next comes simultaneous approximation.
Theorem 10. 
Let f C m + l R N , m , l , N N . The assumptions of Theorem 8 are valid. Call γ = 0 , β . Assume f γ + α and
R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s < ,
for all α i Z + , i = 1 , , N ,   α : = i = 1 N α i = m , where μ ξ n is a Borel probability measure on R N , for ξ n > 0 , ξ n n N bounded sequence.
For j ˜ = 1 , , m , and α : = α 1 , , α N ,   α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s .
Then
θ r , n m f ; · γ f γ · j ˜ = 1 m δ j ˜ , r m α 1 , , α N 0 : α = j ˜ c α , n , j ˜ f γ + α · i = 1 N α i !
α 1 , , α N 0 α = m ω r f γ + α , ξ n i = 1 N α i ! R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s .
Theorem 11. 
Let f C B l R N , l , N N (functions l-times continuously differentiable and bounded). The assumptions of Theorem 8 are valid. Call γ = 0 , β . Assume
R N 1 + s 2 ξ n r d μ ξ n s < .
Then
θ r , n 0 f γ f γ R N 1 + s 2 ξ n r d μ ξ n s ω r f γ , ξ n .
We mention more simultaneous approximation results.
Theorem 12. 
Let f C m + l R N ,   m , l , N N . The assumptions of Theorem 8 are valid. Call γ = 0 , β . Let f γ + α L p R N , α = m , x R N , and p , q > 1 : 1 p + 1 q = 1 . Here μ ξ n is a Borel probability measure on R N for ξ n > 0 , ξ n n N bounded sequence. Assume for all α : = α 1 , , α N , α i Z + , i = 1 , , N ,   α : = i = 1 N α i = m we have
R N i = 1 N s i α i 1 + s 2 ξ n r p d μ ξ n s < .
For j ˜ = 1 , , m , and α : = α 1 , , α N , α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s .
Then
θ r , n m f ; x γ f γ x j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ f γ + α x i = 1 N α i ! p , x
N m m 1 ! 1 q m 1 p q m 1 + 1 1 q α = m 1 i = 1 N α i ! ·
R N i = 1 N s i α i 1 + s 2 ξ n r p d μ ξ n s 1 p · ω r f γ + α , ξ n p p 1 p .
Theorem 13. 
Let f C l R N ,   l , N N . The assumptions of Theorem 8 are valid. Call γ = 0 , β . Let f γ L p R N , x R N ; p , q > 1 : 1 p + 1 q = 1 . Assume μ ξ n probability Borel measures on R N ,   ξ n n N > 0 and bounded. Also suppose
R N 1 + s 2 ξ n r p d μ ξ n s < .
Then
θ r , n 0 f γ f γ p R N 1 + s 2 ξ n r p d μ ξ n s 1 p ω r f γ , ξ n p .
Theorem 14. 
Let f C l R N ,   l , N N . The assumptions of Theorem 8 are valid. Call γ = 0 , β . Let f γ L 1 R N , x R N . Assume μ ξ n probability Borel measures on R N ,   ξ n n N > 0 and bounded. Also suppose
R N 1 + s 2 ξ n r d μ ξ n s < .
Then
θ r , n 0 f γ f γ 1 R N 1 + s 2 ξ n r d μ ξ n s ω r f γ , ξ n 1 .
The last supporting result is as follows:
Theorem 15. 
Let f C m + l R N , m , l , N N . The assumptions of Theorem 8 are valid. Call γ = 0 , β . Let f γ + α L 1 R N ,   α = m , x R N . Here μ ξ n is a Borel probability measure on R N for ξ n > 0 , ξ n n N is a bounded sequence. Assume for all α : = α 1 , , α N , α i Z + , i = 1 , , N ,   α : = i = 1 N α i = m , we have
R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s < .
For j ˜ = 1 , , m , and α : = α 1 , , α N , α i Z + , i = 1 , , N ,   α : = i = 1 N α i = j ˜ , call
c α , n , j ˜ : = R N i = 1 N s i α i d μ ξ n s .
Then
θ r , n m f ; x γ f γ x j ˜ = 1 m δ j ˜ , r m α = j ˜ c α , n , j ˜ f γ + α x i = 1 N α i ! 1 , x
α = m 1 i = 1 N α i ! ω r f γ + α , ξ n 1 R N i = 1 N s i α i 1 + s 2 ξ n r d μ ξ n s .

3. About the q -Deformed and λ -Parametrized Hyperbolic Tangent Function g q , λ

We consider the activation function g q , λ and we mention some of its related properties; most of these come from ([17], ch. 17).
Let the activation function
g q , λ x = e λ x q e λ x e λ x + q e λ x , λ , q > 0 , x R .
It is
g q , λ 0 = 1 q 1 + q ,
and
g q , λ x = g 1 q , λ x , x R ,
with
g q , λ + = 1 , g q , λ = 1 .
We consider the function
M q . λ x : = 1 4 g q , λ x + 1 g q , λ x 1 > 0 ,
x R ; q , λ > 0 . We have M q , λ ± = 0 , so the x-axis is the horizontal asymptote.
It holds
M q , λ x = M 1 q , λ x , x R ; q , λ > 0 ,
and
M 1 q , λ x = M q , λ x , x R .
That is
M q , λ + M 1 q , λ x = M q , λ + M 1 q , λ x ,
an even function.
The M q , λ maximum is
M q , λ ln q 2 λ = tanh λ 2 , λ > 0 .
In [18], we proved that
M q , λ x < 2 q λ e 2 λ e 2 λ x , x 1 .
Next we follow [17], pp. 432–433.
Let x R N , N N ; x = x 1 , , x N .
We define
Z 1 x : = Z q , λ x 1 , , x N : = i = 1 N M q , λ x i > 0 , q , λ > 0 .
From (57), we have
M q , λ x i < 2 q λ e 2 λ e 2 λ x i , x i 1 , i = 1 , , N .
That is
Z 1 x < 2 q λ N e 2 λ N e 2 λ i = 1 N x i , x i 1 , i = 1 , , N .
So, the last is x R + [ 0 , 1 ) N .
We have
R N Z q , λ x d x = 1 ,
that is Z q is a multivariate density function.
Let ξ > 0 , then
1 ξ N R N Z q , λ x ξ d x = 1 ,
so that 1 ξ N Z q , λ x ξ is a multivariate density function on R N , and let
d μ ξ n : = 1 ξ N Z q , λ x ξ d x , ξ > 0 , d x = d x 1 d x 2 d x N .
Clearly, μ ξ is a Borel probability measure in R N .
We have that
M q , λ x i = M 1 q , λ x i , and M 1 q , λ x i = M q , λ x i ,
x i R ,   i = 1 , , N .
Adding the above, we obtain
M q , λ x i + M 1 q , λ x i = M 1 q , λ x i + M q , λ x i ,
that is
M q , λ + M 1 q , λ x i = M q , λ + M 1 q , λ x i ,
x i R ,   i = 1 , , N .
So, M q , λ + M 1 q , λ x i is a symmetric function over R , i = 1 , , N , and
0 < M q , λ x i < M q , λ + M 1 q , λ x i ,
x i R ,   i = 1 , , N .
Therefore, we obtain
0 < Z q , λ x = i = 1 N M q , λ x i < i = 1 N M q , λ + M 1 q , λ x i ,
x R N .
Furthermore, it holds that
Z q , λ x < i = 1 N M q , λ + M 1 q , λ x i <
i = 1 N 2 q λ e 2 λ e 2 λ x i + 2 q λ e 2 λ e 2 λ x i = i = 1 N q + 1 q 2 λ e 2 λ e 2 λ x i =
q + 1 q N 2 λ N e 2 λ N e 2 λ i = 1 N x i ,
for any x i 1 , i = 1 , , N ; so that x R + [ 0 , 1 ) N .
Furthemore, ( ξ > 0 ) we have
1 ξ N Z q , λ x ξ < 1 ξ N i = 1 N M q , λ + M 1 q , λ x i ξ =
i = 1 N 1 ξ M q , λ x i ξ + 1 ξ M 1 q , λ x i ξ ,
x R N , x = x 1 , , x N .
Above 1 ξ M q , λ x i ξ and 1 ξ M 1 q , λ x i ξ are univariate density functions.
Furthermore, 1 ξ M q , λ x i ξ + M 1 q , λ x i ξ 2 is also a density function on R , and 1 ξ N i = 1 N M q , λ + M 1 q , λ x i ξ 2 is a density function on R N .
So, we can rewrite
1 ξ N Z q , λ x ξ < 2 N 1 ξ N i = 1 N M q , λ + M 1 q , λ x i ξ 2 ,
x R N , x = x 1 , , x N .
In Section 4, all proofs are based on our “Symmetrization Technique” in estimating integrals, as you will see.

4. Auxiliary Essential Results

We need the following:
Theorem 16. 
Let r , N N , α j ¯ Z + , j = 1 , , N : α : = j = 1 N α j ¯ = m N ; ξ n ( 0 , 1 ] , n N ; s = s 1 , , s N R N ; λ > 0 .
Then
U ξ n α : = 1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r Z q , λ s ξ n d s 1 d s N
ξ n m 1 + N r tanh λ N + q + 1 q N e 2 λ N 2 m + r N 1 λ m + N r i = 1 N Γ α i ¯ + r + 1 , 2 λ < + ,
where above Γ · , · is the incomplete upper gamma function.
Proof. 
We observe that
U ξ n α 1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
1 ξ n N R + N i = 1 N s i α i ¯ 1 + s 2 ξ n r
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N
1 ξ n N R + N i = 1 N s i α i ¯ 1 + i = 1 N s i ξ n r
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
ξ n m R + N i = 1 N s i ξ n α i ¯ 1 + i = 1 N s i ξ n r
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 ξ n d s 2 ξ n d s N ξ n =
ξ n m R + N i = 1 N z i α i ¯ 1 + i = 1 N z i r
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N =
ξ n m [ 0 , 1 ) N i = 1 N z i α i ¯ 1 + i = 1 N z i r
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N +
R + [ 0 , 1 ) N i = 1 N z i α i ¯ 1 + i = 1 N z i r
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N
ξ n m [ 0 , 1 ) N i = 1 N z i α i ¯ 1 + i = 1 N z i r d z 1 d z N tanh λ N +
2 r q + 1 q N 2 λ N e 2 λ N
1 1 N -times i = 1 N z i α i ¯ i = 1 N z i r e 2 λ i = 1 N z i d z 1 d z N
ξ n m 1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
1 1 i = 1 N z i α i ¯ i = 1 N z i r i = 1 N e 2 λ z i i = 1 N d z i =
ξ n m 1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
i = 1 N 1 z i α i ¯ + r e 2 λ z i d z i =
ξ n m 1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
i = 1 N 1 2 λ α i ¯ + r + 1 2 λ y i α i ¯ + r + 1 1 e y i d y i
(by [19], p. 348)
= ξ n m 1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
1 2 λ m + N r + 1 i = 1 N Γ α i ¯ + r + 1 , 2 λ =
ξ n m 1 + N r tanh λ N + q + 1 q N e 2 λ N 2 m + r N 1 λ m + N r i = 1 N Γ α i ¯ + r + 1 , 2 λ < + .
We continue with
Theorem 17. 
Let r , N N , ξ n ( 0 , 1 ] , n N , λ > 0 . Then
Φ ξ n : = 1 2 ξ n N R N 1 + s 2 ξ n r Z q , λ s ξ n d s 1 d s N
1 + N r tanh λ N + q + 1 q N e 2 λ N 2 r N 1 λ N r Γ N r + 1 , 2 λ < + .
Proof. 
We observe that
Φ ξ n = 1 2 ξ n N R N 1 + s 2 ξ n r Z q , λ s ξ n d s 1 d s N
1 2 ξ n N R N 1 + s 2 ξ n r i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
1 ξ n N R + N 1 + s 2 ξ n r i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N
1 ξ n N R + N 1 + i = 1 N s i ξ n r i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
R + N 1 + i = 1 N s i ξ n r i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 ξ n d s N ξ n =
R + N 1 + i = 1 N z i r i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N =
[ 0 , 1 ) N 1 + i = 1 N z i r i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N +
R + [ 0 , 1 ) N 1 + i = 1 N z i r i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N
[ 0 , 1 ) N 1 + i = 1 N z i r d z 1 d z n tanh λ N +
2 r q + 1 q N 2 λ N e 2 λ N 1 1 N -times i = 1 N z i r e 2 λ i = 1 N z i d z 1 d z N
1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
1 1 i = 1 N z i r i = 1 N e 2 λ z i i = 1 N d z i =
1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N i = 1 N 1 z i r e 2 λ z i d z i =
1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
1 2 λ N r + 1 i = 1 N 2 λ y i r + 1 1 e y i d y i =
1 + N r tanh λ N + 2 r + N λ q + 1 q N e 2 λ N
1 2 λ N r + 1 Γ N r + 1 , 2 λ =
1 + N r tanh λ N + q + 1 q N e 2 λ N 2 r N 1 λ N r Γ r + 1 , 2 λ N < + .
It follows
Theorem 18. 
All as in Theorem 16, p > 1 . Then
V ξ n α : = 1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r p Z q , λ s ξ n d s 1 d s N
ξ n m p 1 + N r p tanh λ N + q + 1 q N e 2 λ N 2 m + r N 1 p λ m + N r p i = 1 N Γ α i ¯ + r p + 1 , 2 λ < + .
Proof. 
We observe that
V ξ n α = 1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r p Z q , λ s ξ n d s 1 d s N
1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r p
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
1 ξ n N R + N i = 1 N s i α i ¯ 1 + s 2 ξ n r p
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N
1 ξ n N R + N i = 1 N s i α i ¯ p 1 + i = 1 N s i ξ n r p
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
ξ n m p R + N i = 1 N s i ξ n α i ¯ p 1 + i = 1 N s i ξ n r p
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 ξ n d s N ξ n =
ξ n m p R + N i = 1 N z i α i ¯ p 1 + i = 1 N z i r p
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N =
ξ n m p [ 0 , 1 ) N i = 1 N z I α i ¯ p 1 + i = 1 N z i r p
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N +
R + [ 0 , 1 ) N i = 1 N z i α i ¯ p 1 + i = 1 N z i r p
i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N
ξ n m p 1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
1 1 N -times i = 1 N z i α i ¯ p i = 1 N z i r p e 2 λ i = 1 N z i d z 1 d z N
ξ n m p 1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
1 1 i = 1 N z i α i ¯ p i = 1 N z i r p i = 1 N e 2 λ z i i = 1 N d z i =
ξ n m p 1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
i = 1 N 1 z i α i ¯ + r p e 2 λ z i d z i =
ξ n m p 1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
i = 1 N 1 2 λ α i ¯ + r p + 1 2 λ y i α i ¯ + r p + 1 1 e y i d y i =
ξ n m p 1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
1 2 λ m p + N r p + 1 i = 1 N Γ α i ¯ + r p + 1 , 2 λ =
ξ n m p 1 + N r p tanh λ N + q + 1 q N e 2 λ N 2 m + r N 1 p λ m + N r p i = 1 N Γ α i ¯ + r p + 1 , 2 λ < + .
We continue with
Theorem 19. 
Let r , N N , ξ n ( 0 , 1 ] , n N , p > 1 , λ > 0 . Then
E ξ n : = 1 2 ξ n N R N 1 + s 2 ξ n r p Z q , λ s ξ n d s 1 d s N
1 + N r p tanh λ N + q + 1 q N e 2 λ N 2 r p N 1 λ N r p Γ N r p + 1 , 2 λ < + .
Proof. 
We observe that
E ξ n = 1 2 ξ n N R N 1 + s 2 ξ n r p Z q , λ s ξ n d s 1 d s N
1 2 ξ n N R N 1 + s 2 ξ n r p i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
1 ξ n N R + N 1 + s 2 ξ n r p i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N
1 ξ n N R + N 1 + i = 1 N s i ξ n r p i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
R + N 1 + i = 1 N s i ξ n r p i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 ξ n d s N ξ n =
R + N 1 + i = 1 N z i r p i = 1 N M q , λ + M 1 q , λ z i d z 1 d z N =
[ 0 , 1 ) N 1 + i = 1 N z i r p i = 1 N M q , λ + M 1 q , λ z i i = 1 N d z i +
R + [ 0 , 1 ) N 1 + i = 1 N z i r p i = 1 N M q , λ + M 1 q , λ z i i = 1 N d z i
1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
1 1 i = 1 N z i r p e 2 λ i = 1 N z i i = 1 N d z i
1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N i = 1 N 1 z i r p e 2 λ z i d z i =
1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
i = 1 N 1 2 λ r p + 1 2 λ y i r p + 1 1 e y i d y i =
1 + N r p tanh λ N + 2 r p q + 1 q N 2 λ N e 2 λ N
1 2 λ N r p + 1 Γ N r p + 1 , 2 λ =
1 + N r p tanh λ N + q + 1 q N e 2 λ N 2 r p N 1 λ N r p Γ N r p + 1 , 2 λ < + .
The last supporting result for Z q , λ uses the following:
Theorem 20. 
Let N N , ξ n ( 0 , 1 ] , n N ,   α j ¯ Z + , j = 1 , , N : α : = j = 1 N α j ¯ = m N , λ > 0 .
Then
Δ ξ n α : = ξ n m 1 2 ξ n N R N i = 1 N s i α i ¯ Z q , λ s ξ n d s 1 d s N
tanh λ N + q + 1 q N e 2 λ N 2 λ m i = 1 N Γ α i ¯ + 1 , 2 λ < + .
Proof. 
We have
Δ ξ n α : = ξ n m 1 2 ξ n N R N i = 1 N s i α i ¯ Z q , λ s ξ n d s 1 d s N
ξ n m 1 2 ξ n N R N i = 1 N s i α i ¯
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
ξ n m 1 ξ n N R + N i = 1 N s i α i ¯
i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 d s N =
R + N i = 1 N s i ξ n α i ¯ i = 1 N M q , λ + M 1 q , λ s i ξ n d s 1 ξ n d s N ξ n =
R + N i = 1 N z i α i ¯ i = 1 N M q , λ + M 1 q , λ z i i = 1 N d z i =
[ 0 , 1 ) N i = 1 N z i α i ¯ i = 1 N M q , λ + M 1 q , λ z i i = 1 N d z i +
R + [ 0 , 1 ) N i = 1 N z i α i ¯ i = 1 N M q , λ + M 1 q , λ z i i = 1 N d z i
tanh λ N + q + 1 q N 2 λ N e 2 λ N
1 1 i = 1 N z i α i ¯ i = 1 N e 2 λ z i i = 1 N d z i =
tanh λ N + q + 1 q N 2 λ N e 2 λ N i = 1 N 1 z i α i ¯ e 2 λ z i d z i =
tanh λ N + q + 1 q N 2 λ N e 2 λ N i = 1 N 1 2 λ α i ¯ + 1 2 λ y i α i ¯ + 1 1 e y i d y i =
tanh λ N + q + 1 q N 2 λ N e 2 λ N 1 2 λ m + N i = 1 N Γ α i ¯ + 1 , 2 λ =
tanh λ N + q + 1 q N e 2 λ N 2 λ m i = 1 N Γ α i ¯ + 1 , 2 λ < + .

5. Main Results

We construct
Definition 3. 
Let f : R N R be a Borel measurable function, we follow (1)–(5). We define
θ 1 n f ; x 1 , , x N : = θ 1 , r , n m f ; x 1 , , x N : =
j = 0 r α j , r m 1 ξ n N R N f x 1 + s 1 j , x 2 + s 2 j , , x N + s N j Z q , λ x ξ n d x .
The above multiple smooth singular integral operators are a special case of (5).
In this section, we study the approximation properties of θ 1 n , n N .
So, we will apply the results of Section 2 using Section 3 and Section 4.
We present
Theorem 21. 
Let m N , f C m R N , N 1 , x R N . Assume m f · , , · x 1 α 1 ¯ x N α N ¯ < , for all α j ¯ Z + ,   j = 1 , , N ;   j = 1 N α j ¯ = m .
Let ξ n ( 0 , 1 ] , n N , and the Borel probability measure on R N denoted by μ ¯ ξ n , such that
d μ ¯ ξ n x = 1 ξ n N Z q , λ x ξ n d x , x R N .
For all α : = α 1 ¯ , , α N ¯ , α i ¯ Z + ,   i = 1 , , N ;   α : = i = 1 N α i ¯ = m , , we denote
U ξ n α : = 1 2 ξ n N R N i = 1 N s i α i ¯ 1 + s 2 ξ n r Z q , λ s ξ n d s 1 d s N .
For j ˜ = 1 , , m , and α : = α 1 ¯ , , α N ¯ , α i ¯ Z + , i = 1 , , N ,   α : = i = 1 N α i ¯ = j ˜ , call
c ¯ α , n : = c ¯ α , n , j ˜ : = 1 ξ n N R N i = 1 N s i α i ¯ Z q , λ s ξ n d s .
Then
(i) 
E 1 , r , n m x : = θ 1 , r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α ¯ 1 , , α ¯ N 0 : α = j ˜ c ¯ α , n , j ˜ f α x i = 1 N α ¯ i !
2 N α ¯ 1 , , α ¯ N 0 α = m ω r f α , ξ n i = 1 N α ¯ i ! U ξ n α ,
x R N ,
(ii) 
E 1 , r , n m R . H . S . 96 .
Given that ξ n 0 , as n , we have E 1 , r , n m 0 with rates.
(iii) 
It also holds that
θ 1 , r , n m f f
j ˜ = 1 m δ j ˜ , r m α ¯ 1 , , α ¯ N 0 α = j ˜ c ¯ α , n , j ˜ f α i = 1 N α ¯ i ! + R . H . S . ( 96 ) ,
given that f α < , for all α : α = j ˜ , j ˜ = 1 , , m . . Also, it holds that
θ r , n m f f 0
with rates, as ξ n 0 ,   n .
Proof. 
By Theorems 1, 16, 20. □
We continue with
Theorem 22. 
Let f C B R N , N 1 . Then
θ 1 , r , n 0 f f 2 N Φ ξ n ω r f , ξ n ,
where
Φ ξ n : = 1 2 ξ n N R N 1 + s 2 ξ n r Z q , λ s ξ n d s .
Clearly, we have
θ 1 , r , n 0 f f 0 ,
with rates, given that f is uniformly continuous.
Proof. 
By Theorem 2 and Theorem 17. □
Next comes L p , p > 1 approximation.
Theorem 23. 
Let f C m R N , m N , N 1 , with f α L p R N ,   α = m , x R N . Let p , q > 1 : 1 p + 1 q = 1 . Let ξ n ( 0 , 1 ] , n N , and the Borel probability measure on R N , denoted by μ ¯ ξ n , such that
d μ ¯ ξ n x = 1 ξ n N Z q , λ x ξ n d x , x R N .
For all α : = α ¯ 1 , , α ¯ N ,   α ¯ i Z + , i = 1 , , N ,   α : = i = 1 N α ¯ i = m , we denote this by
V ξ n α : = 1 2 ξ n N R N i = 1 N s i α i 1 + s 2 ξ n r p Z q , λ s ξ n d s .
Here, c ¯ α , n : = c ¯ α , n , j ˜ is as in (95).
Then
E 1 , r , n m p = θ 1 , r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ f α x i = 1 N α ¯ i ! p , x
N m ( m 1 ) ! 1 q m 1 p q m 1 + 1 1 q α = m 1 i = 1 N α ¯ i ! 2 N V ξ n α ω r f α , ξ n p p 1 p .
As n and ξ n 0 , by (103), we obtain E 1 , r , n m p 0 with rates.
By (103), furthermore, we obtain
θ 1 , r , n m f ; x f x p , x
j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ i = 1 N α ¯ i ! f α p + R . H . S . ( 103 ) ,
given that f α p < ,   α = j ˜ , j ˜ = 1 , , m .
Indeed, here, θ 1 , r , n m f f p 0 , that is θ 1 , r , n m I the unit operator, in L p norm, with rates.
Proof. 
By Theorems 3, 18, 20. □
We especially have
Theorem 24. 
Let f C R N L p R N ; N 1 ; p , q > 1 : 1 p + 1 q = 1 ; ξ n ( 0 , 1 ] , n N . Set
E ξ n : = 1 2 ξ n n R N 1 + s 2 ξ n r p Z q , λ s ξ n d s .
Then
θ 1 , r , n 0 f f p 2 N p E ξ n 1 p ω r f , ξ n p .
As ξ n 0 , when n , we obtain θ 1 , r , n 0 f f p 0 , that is θ 1 , r , n 0 I , the unit operator, in L p norm.
Proof. 
By Theorems 4, 19. □
The L 1 approximation follows.
Theorem 25. 
Let f C m R N , m , N N , with f α L 1 R N ,   α = m , x R N . Here ξ n ( 0 , 1 ] , n N , and the Borel probability measure on R N , denoted by μ ¯ ξ n :
d μ ¯ ξ n x = 1 ξ n N Z q , λ x ξ n d x , x R N .
The U ξ n α is as in (94), and c ¯ α , n , j ˜ , as in (95).
Then
E 1 , r , n m 1 = θ 1 , r , n m f ; x f x j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ f α x i = 1 N α ¯ i ! 1 , x
2 N α = m 1 i = 1 N α ¯ i ! ω r f α , ξ n 1 U ξ n α .
As ξ n 0 , we find E 1 , r , n m 1 0 with rates.
From (107), we derive
θ 1 , r , n m f f 1
j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ i = 1 N α ¯ i ! f α 1 + R . H . S . ( 107 ) ,
given that f α 1 < ,   α = j ˜ , j ˜ = 1 , , m .
As n , and ξ n 0 , we derive that θ 1 , r , n m f f 1 0 , that is θ 1 , r , n m I in L 1 norm, with rates.
Proof. 
By Theorems 5, 16, 20. □
Theorem 26. 
Let f C R N L 1 R N , N 1 ;   ξ n ( 0 , 1 ] , n N . Here, Φ ξ n is as in (76).
Then
θ 1 , r , n 0 f f 1 2 N Φ ξ n ω r f , ξ n 1 .
As ξ n 0 , we obtain θ 1 , r , n 0 I in L 1 norm.
Proof. 
By Theorems 6, 17. □
We continue with global smoothness preservation.
Theorem 27. 
We suppose θ 1 , r , n m ˜ f ; x R , ∀ x R . Let h > 0 , f C R N , N 1 .
(i) 
Assume ω m f , h < . Then
ω m θ 1 , r , n m ˜ f , h j ˜ = 0 r α j ˜ , r m ˜ ω m f , h .
(ii) 
Assume f C R N L 1 R N . Then
ω m θ 1 , r , n m ˜ f , h 1 j ˜ = 0 r α j ˜ , r m ˜ ω m f , h 1 .
(iii) 
Assume f C R N L p R N , p > 1 . Then
ω m θ 1 , r , n m ˜ f , h p j ˜ = 0 r α j ˜ , r m ˜ ω m f , h p .
Proof. 
By Theorem 7. □
Here ξ n ( 0 , 1 ] , n N .
Let the Borel probability measure on R N , denoted by μ ¯ ξ n :
d μ ¯ ξ n x = 1 ξ n N Z q , λ x ξ n d x , x R N .
We detail the simultaneous smoothness results.
Theorem 28. 
Let h > 0 , and the assumptions of Theorem 8 regarding μ ¯ ξ n are valid. Here, γ = 0 , β , ( 0 = 0 , , 0 ).
(i) 
Assume ω m f γ , h < . Then
ω m θ 1 , r , n m ˜ f γ , h j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h .
(ii) 
Additionally, assume f γ L 1 R N . Then
ω m θ 1 , r , n m ˜ f γ , h 1 j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h 1 .
(iii) 
Additionally, assume f γ L p R N , p > 1 . Then
ω m θ 1 , r , n m ˜ f γ , h p j ˜ = 0 r α j ˜ , r m ˜ ω m f γ , h p .
Proof. 
By Theorem 9 □
Simultaneous approximation follows.
Theorem 29. 
Let f C m + l R N , m , l , N N . The assumptions of Theorem 8 are valid with respect to μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β , assume f γ + α ;   α : = j = 1 N α ¯ j = m .
Here, c ¯ α , n , j ˜ , j ˜ = 1 , , m , is as in (95); and U ξ n is as in (71).
Then
θ 1 , r , n m f ; · γ f γ · j ˜ = 1 m δ j ˜ , r m α ¯ 1 , , α ¯ N 0 : α = j ˜ c ¯ α , n , j ˜ f γ + α · i = 1 N α ¯ i !
2 N α ¯ 1 , , α ¯ N 0 α = m ω r f γ + α , ξ n i = 1 N α ¯ i ! U ξ n α .
Proof. 
By Theorems 8, 10, 16, 20. □
Theorem 30. 
Let f C B l R N , l , N N . The assumptions of Theorem 8 are valid for μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β . Here, Φ ξ n is as in (76).
Then
θ 1 , r , n 0 f γ f γ 2 N Φ ξ n ω r f γ , ξ n .
Proof. 
By Theorems 8, 11, 17. □
The L p , p > 1 simultaneous approximation follows:
Theorem 31. 
Let f C m + l R N ,   m , l , N N . The assumptions of Theorem 8 are valid regarding μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β . Let f γ + α L p R N , α = m , x R N , and p , q > 1 : 1 p + 1 q = 1 . Here, V ξ n α is as in (81), and c ¯ α , n , j ˜ ,   j ˜ = 1 , , m , is as in (95).
Then
θ 1 , r , n m f ; x γ f γ x j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ f γ + α x i = 1 N α ¯ i ! p , x
N m m 1 ! 1 q m 1 p q m 1 + 1 1 q
α = m 1 i = 1 N α ¯ i ! V ξ n α ω r f γ + α , ξ n p p 1 p .
Proof. 
By Theorems 8, 12, 18, 20. □
Theorem 32. 
Let f C l R N ,   l , N N . The assumptions of Theorem 8 are valid with respect to μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β . Let f γ L p R N , x R N ; p , q > 1 : 1 p + 1 q = 1 . Here, E ξ n is as in (86). Then
θ 1 , r , n 0 f γ f γ p 2 N p E ξ n 1 p ω r f γ , ξ n p .
Proof. 
By Theorems 8, 13, 19. □
We conclude with L 1 simultaneous approximation.
Theorem 33. 
Let f C l R N ,   l , N N . The assumptions of Theorem 8 are valid for μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β . Let f γ L 1 R N , x R N . Here Φ ξ n is as in (76). Then
θ 1 , r , n 0 f γ f γ 1 2 N Φ ξ n ω r f γ , ξ n 1 .
Proof. 
By Theorems 8, 14, 17. □
Theorem 34. 
Let f C m + l R N , m , l , N N . The assumptions of Theorem 8 are valid for μ ¯ ξ n , ξ n ( 0 , 1 ] , n N . Call γ = 0 , β . Let f γ + α L 1 R N ,   α = m , x R N . Here U ξ n α , α = m , is as in (71), and c ¯ α , n , j ˜ is as in (95), j ˜ = 1 , , m .
Then
θ 1 , r , n m f ; x γ f γ x j ˜ = 1 m δ j ˜ , r m α = j ˜ c ¯ α , n , j ˜ f γ + α x i = 1 N α ¯ i ! 1 , x
2 N α = m 1 i = 1 N α ¯ i ! ω r f γ + α , ξ n 1 U ξ n α .
Proof. 
By Theorems 8, 15, 16, 20. □

6. Conclusions

Here we presented the novel idea of going from the neural networks main tools, the activation functions, to multivariate singular integral approximation. This is a rare case of employing applied mathematics to theoretical ones.

Funding

This research received no external funding.

Data Availability Statement

No new data were created in this study. It is a theoretical article.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Anastassiou, G.; Mezei, R. Approximation by Singular Integrals; Cambridge Scientific Publishers: Cambridge, UK, 2012. [Google Scholar]
  2. Anastassiou, G.A. Approximation by Multivariate Singular Integrals; Briefs in Mathematics; Springer: New York, NY, USA, 2011. [Google Scholar]
  3. Gal, S.G. Remark on the degree of approximation of continuous functions by singular integrals. Math. Nachrichten 1993, 164, 197–199. [Google Scholar] [CrossRef]
  4. Gal, S.G. Degree of approximation of continuous functions by some singular integrals. Rev. Anal. Numér. Théorie Approx. 1998, 27, 251–261. [Google Scholar]
  5. Mohapatra, R.N.; Rodriguez, R.S. On the rate of convergence of singular integrals for Hölder continuous functions. Math. Nachrichten 1990, 149, 117–124. [Google Scholar] [CrossRef]
  6. Aral, A. On a generalized Gauss Weierstrass singular integral. Fasc. Math. 2005, 35, 23–33. [Google Scholar]
  7. Aral, A. Pointwise approximation by the generalization of Picard and Gauss-Weierstrass singular integrals. J. Concr. Appl. Math. 2008, 6, 327–339. [Google Scholar]
  8. Aral, A. On generalized Picard Integral Operators; Advances in Summability and Approximation Theory; Springer: Singapore, 2018; pp. 157–168. [Google Scholar]
  9. Aral, A.; Deniz, E.; Erbay, H. The Picard and Gauss-Weiertrass singular integrals in (p,q)-calculus. Bull. Malays. Math. Sci. Soc. 2020, 43, 1569–1583. [Google Scholar] [CrossRef]
  10. Aral, A.; Gal, S.G. q-generalizations of the Picard and Gauss-Weierstrass singular integrals. Taiwan J. Math. 2008, 12, 2501–2515. [Google Scholar] [CrossRef]
  11. Singh, A.P.; Singh, U. Approximation properties of a modified Gauss–Weierstrass singular integral in a weighted space. J. Inequal. Appl. 2024, 2024, 1–17. [Google Scholar] [CrossRef]
  12. Prelim, P.; Pavel, G.; Rovba, E.A. On approximations of a singular integral on a segment by Fourier-Chebyshev’s rational integral operators. Dokl. Nats. Akad. Nauk Belarusi 2024, 68, 95–104. (In Russian) [Google Scholar]
  13. Ozhegova, A.V.; Khairullina, L.E. Uniform approximations of solutions to a strongly singular integral equation of the first kind. Lobachevskii J. Math. 2024, 45, 498–503. [Google Scholar] [CrossRef]
  14. Ahmadova, A.; Mahmudov, N.I. Picard approximation of a singular backward stochastic nonlinear Volterra integral equation. Qual. Theory Dyn. Syst. 2024, 23, 192. [Google Scholar] [CrossRef]
  15. Occorsio, D.; Russo, M.G.; Themistoclakis, W. On solving some Cauchy singular integral equations by de la Vallée Poussin filtered approximation. Appl. Numer. Math. 2024, 200, 358–378. [Google Scholar] [CrossRef]
  16. Anastassiou, G.A. Trigonometric and Hyperbolic Generated Apprpoximation Theory; World Scientific: Singapore; New York, NY, USA, 2024. [Google Scholar]
  17. Anastassiou, G.A. Parametrized, Deformed and General Neural Networks; Springer: Heidelberg/Berlin, Germany; New York, NY, USA, 2023. [Google Scholar]
  18. Anastassiou, G.A. Quantitative uniform approximation by activated singular operators. Mathematics 2023, 12, 2152. [Google Scholar] [CrossRef]
  19. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Anastassiou, G.A. Multivariate Perturbed Hyperbolic Tangent-Activated Singular Integral Approximation. Mathematics 2024, 12, 2700. https://doi.org/10.3390/math12172700

AMA Style

Anastassiou GA. Multivariate Perturbed Hyperbolic Tangent-Activated Singular Integral Approximation. Mathematics. 2024; 12(17):2700. https://doi.org/10.3390/math12172700

Chicago/Turabian Style

Anastassiou, George A. 2024. "Multivariate Perturbed Hyperbolic Tangent-Activated Singular Integral Approximation" Mathematics 12, no. 17: 2700. https://doi.org/10.3390/math12172700

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop