Weighted Graph-Based Two-Sample Test via Empirical Likelihood
Abstract
:1. Introduction
2. Weighted Graph-Based Two-Sample Empirical Likelihood Test
3. Simulations
4. Real Data Analysis
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Callegaro, A.; Spiessens, B. Testing treatment effect in randomized clinical trials with possible nonproportional hazards. Stat. Biopharm. Res. 2017, 9, 204–211. [Google Scholar] [CrossRef]
- Tusher, V.G.; Tibshirani, R.; Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. A modern framework for achieving enterprise excellence. Int. J. Lean Six Sigma 2010, 1, 56–65. [Google Scholar] [CrossRef]
- Blau, F.D.; Kahn, L.M. The gender wage gap: Extent, trends, and explanations. J. Econ. Lit. 2017, 55, 789–865. [Google Scholar]
- Gudmundarson, R.; Peters, G. Assessing portfolio diversification via two-sample graph kernel inference. A case study on the influence of ESG screening. PLoS ONE 2024, 19, e0301804. [Google Scholar]
- Arroyo, J.; Kessler, D.; Levina, E.; Taylor, S. Network classification with applications to brain connectomics. Ann. Appl. Stat. 2017, 13, 1648–1677. [Google Scholar] [CrossRef]
- Stam, C.J.; Jones, B.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 2007, 17, 92–99. [Google Scholar] [CrossRef]
- Ghoshdastidar, D.; Gutzeit, M.; Carpentier, A.; von Luxburg, U. Two-sample tests for large random graphs using network statistics. In Proceedings of the Conference on Learning Theory, PMLR, Amsterdam, The Netherlands, 7–10 July 2017; pp. 954–977. [Google Scholar]
- Ghoshdastidar, D.; Von Luxburg, U. Practical methods for graph two-sample testing. Adv. Neural Inf. Process. Syst. 2018, 31, 1568. [Google Scholar]
- Ghoshdastidar, D.; Gutzeit, M.; Carpentier, A.; Von Luxburg, U. Two-sample hypothesis testing for inhomogeneous random graphs. Ann. Stat. 2020, 48, 2208–2229. [Google Scholar] [CrossRef]
- Tang, M.; Athreya, A.; Sussman, D.L.; Lyzinski, V.; Priebe, C.E. A nonparametric two-sample hypothesis testing problem for random graphs. Bernoulli 2017, 23, 1599–1630. [Google Scholar] [CrossRef]
- Tang, M.; Athreya, A.; Sussman, D.L.; Lyzinski, V.; Park, Y.; Priebe, C.E. A semiparametric two-sample hypothesis testing problem for random graphs. J. Comput. Graph. Stat. 2017, 26, 344–354. [Google Scholar] [CrossRef]
- Maugis, P.A.; Olhede, S.; Priebe, C.; Wolfe, P. Testing for equivalence of network distribution using subgraph counts. J. Comput. Graph. Stat. 2020, 29, 455–465. [Google Scholar] [CrossRef]
- Maugis, P. Central limit theorems for local network statistics. arXiv 2020, arXiv:2006.15738. [Google Scholar] [CrossRef]
- Yuan, M.; Wen, Q. A practical two-sample test for weighted random graphs. J. Appl. Stat. 2021, 50, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Bowman, F.; Laurienti, P. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain. Stat. Surv. 2013, 7, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.B. Empirical Likelihood; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Owen, A.B. Empirical likelihood confidence region. Ann. Stat. 1990, 18, 90–120. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, C.; Zhang, R. Empirical likelihood for the two-sample mean problem. Stat. Probab. Lett. 2008, 78, 548–556. [Google Scholar] [CrossRef]
- Wu, C.; Yan, Y. Empirical Likelihood Inference for Two-Sample Problems. Stat. Its Interface 2012, 5, 345–354. [Google Scholar] [CrossRef]
- Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Ghoshdastidar, D.; Luxburg, V.U. Two-sample hypothesis testing for inhomogeneous random graphs. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; Volume 48, pp. 3019–3028. [Google Scholar]
Method | (Size) | (Power) | (Power) | |
---|---|---|---|---|
0.054 | 0.092 | 0.196 | ||
0.051 | 0.117 | 0.284 | ||
t test | 0.052 | 0.125 | 0.323 | |
0.055 | 0.194 | 0.601 | ||
0.051 | 0.241 | 0.745 | ||
0.054 | 0.387 | 0.917 | ||
0.048 | 0.106 | 0.213 | ||
0.050 | 0.130 | 0.300 | ||
EL test | 0.051 | 0.136 | 0.337 | |
0.049 | 0.220 | 0.634 | ||
0.053 | 0.269 | 0.768 | ||
0.049 | 0.419 | 0.926 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.096 | 0.269 | ||
0.051 | 0.134 | 0.393 | ||
t test | 0.050 | 0.160 | 0.432 | |
0.055 | 0.264 | 0.774 | ||
0.049 | 0.361 | 0.891 | ||
0.051 | 0.528 | 0.982 | ||
0.052 | 0.112 | 0.283 | ||
0.053 | 0.143 | 0.211 | ||
EL test | 0.052 | 0.164 | 0.438 | |
0.053 | 0.279 | 0.787 | ||
0.051 | 0.375 | 0.899 | ||
0.050 | 0.548 | 0.988 | ||
Method | (Size) | (Power) | (Power) | |
0.049 | 0.119 | 0.329 | ||
0.051 | 0.169 | 0.495 | ||
t test | 0.052 | 0.180 | 0.540 | |
0.055 | 0.350 | 0.886 | ||
0.050 | 0.463 | 0.953 | ||
0.052 | 0.657 | 0.996 | ||
0.053 | 0.122 | 0.338 | ||
0.052 | 0.176 | 0.503 | ||
EL test | 0.051 | 0.183 | 0.550 | |
0.052 | 0.360 | 0.890 | ||
0.053 | 0.471 | 0.958 | ||
0.055 | 0.670 | 0.998 |
Method | (Size) | (Power) | (Power) | |
---|---|---|---|---|
0.048 | 0.107 | 0.169 | ||
0.050 | 0.208 | 0.418 | ||
t test | 0.052 | 0.234 | 0.464 | |
0.053 | 0.292 | 0.774 | ||
0.051 | 0.440 | 0.931 | ||
0.052 | 0.633 | 0.982 | ||
0.051 | 0.141 | 0.280 | ||
0.052 | 0.252 | 0.478 | ||
EL test | 0.051 | 0.289 | 0.540 | |
0.056 | 0.333 | 0.811 | ||
0.053 | 0.466 | 0.943 | ||
0.055 | 0.670 | 0.995 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.126 | 0.243 | ||
0.051 | 0.235 | 0.498 | ||
t test | 0.050 | 0.261 | 0.549 | |
0.055 | 0.402 | 0.912 | ||
0.049 | 0.577 | 0.974 | ||
0.051 | 0.790 | 0.985 | ||
0.052 | 0.157 | 0.352 | ||
0.053 | 0.285 | 0.561 | ||
EL test | 0.052 | 0.333 | 0.650 | |
0.053 | 0.441 | 0.916 | ||
0.051 | 0.597 | 0.985 | ||
0.050 | 0.807 | 0.992 | ||
Method | (Size) | (Power) | (Power) | |
0.049 | 0.113 | 0.325 | ||
0.051 | 0.234 | 0.616 | ||
t test | 0.052 | 0.272 | 0.621 | |
0.055 | 0.496 | 0.972 | ||
0.050 | 0.658 | 0.980 | ||
0.052 | 0.891 | 0.996 | ||
0.053 | 0.140 | 0.404 | ||
0.052 | 0.310 | 0.694 | ||
EL test | 0.051 | 0.352 | 0.713 | |
0.052 | 0.524 | 0.981 | ||
0.053 | 0.689 | 0.997 | ||
0.055 | 0.900 | 1.000 |
Method | (Size) | (Power) | (Power) | |
---|---|---|---|---|
0.051 | 0.165 | 0.288 | ||
0.053 | 0.170 | 0.322 | ||
t test | 0.054 | 0.174 | 0.347 | |
0.050 | 0.411 | 0.759 | ||
0.052 | 0.512 | 0.827 | ||
0.055 | 0.671 | 0.931 | ||
0.050 | 0.219 | 0.346 | ||
0.053 | 0.262 | 0.467 | ||
EL test | 0.055 | 0.275 | 0.515 | |
0.052 | 0.458 | 0.788 | ||
0.051 | 0.565 | 0.871 | ||
0.054 | 0.699 | 0.952 | ||
Method | (Size) | (Power) | (Power) | |
0.049 | 0.206 | 0.410 | ||
0.052 | 0.258 | 0.514 | ||
t test | 0.053 | 0.280 | 0.551 | |
0.048 | 0.590 | 0.891 | ||
0.053 | 0.674 | 0.953 | ||
0.052 | 0.848 | 0.982 | ||
0.053 | 0.239 | 0.457 | ||
0.051 | 0.351 | 0.621 | ||
EL test | 0.054 | 0.397 | 0.679 | |
0.055 | 0.622 | 0.904 | ||
0.049 | 0.727 | 0.968 | ||
0.050 | 0.863 | 0.995 | ||
Method | (Size) | (Power) | (Power) | |
0.053 | 0.253 | 0.522 | ||
0.052 | 0.334 | 0.671 | ||
t test | 0.055 | 0.357 | 0.694 | |
0.051 | 0.711 | 0.958 | ||
0.053 | 0.816 | 0.983 | ||
0.056 | 0.933 | 1.000 | ||
0.055 | 0.281 | 0.553 | ||
0.049 | 0.423 | 0.756 | ||
EL test | 0.052 | 0.461 | 0.797 | |
0.054 | 0.732 | 0.969 | ||
0.055 | 0.845 | 0.995 | ||
0.051 | 0.948 | 1.000 |
Method | (Size) | (Power) | (Power) | |
---|---|---|---|---|
0.052 | 0.126 | 0.273 | ||
0.051 | 0.161 | 0.315 | ||
t test | 0.054 | 0.232 | 0.409 | |
0.056 | 0.245 | 0.414 | ||
0.049 | 0.252 | 0.468 | ||
0.051 | 0.263 | 0.531 | ||
0.052 | 0.175 | 0.344 | ||
0.054 | 0.183 | 0.358 | ||
EL test | 0.051 | 0.243 | 0.414 | |
0.052 | 0.258 | 0.468 | ||
0.053 | 0.263 | 0.521 | ||
0.052 | 0.289 | 0.588 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.404 | 0.830 | ||
0.054 | 0.512 | 0.881 | ||
t test | 0.049 | 0.616 | 0.926 | |
0.058 | 0.619 | 0.959 | ||
0.052 | 0.731 | 0.974 | ||
0.052 | 0.796 | 0.983 | ||
0.052 | 0.466 | 0.857 | ||
0.055 | 0.527 | 0.898 | ||
EL test | 0.053 | 0.635 | 0.933 | |
0.050 | 0.662 | 0.972 | ||
0.051 | 0.775 | 0.982 | ||
0.053 | 0.812 | 0.992 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.732 | 0.981 | ||
0.049 | 0.841 | 0.991 | ||
t test | 0.052 | 0.872 | 0.992 | |
0.050 | 0.942 | 0.993 | ||
0.049 | 0.951 | 1.000 | ||
0.055 | 0.985 | 1.000 | ||
0.051 | 0.777 | 0.992 | ||
0.052 | 0.850 | 0.996 | ||
EL test | 0.050 | 0.882 | 0.997 | |
0.051 | 0.947 | 1.000 | ||
0.052 | 0.958 | 1.000 | ||
0.052 | 0.989 | 1.000 |
Method | (Size) | (Power) | (Power) | |
---|---|---|---|---|
0.052 | 0.147 | 0.159 | ||
0.053 | 0.151 | 0.165 | ||
t test | 0.049 | 0.231 | 0.171 | |
0.055 | 0.254 | 0.256 | ||
0.052 | 0.266 | 0.269 | ||
0.049 | 0.279 | 0.295 | ||
0.052 | 0.153 | 0.179 | ||
0.054 | 0.158 | 0.332 | ||
EL test | 0.055 | 0.272 | 0.346 | |
0.050 | 0.283 | 0.353 | ||
0.052 | 0.289 | 0.385 | ||
0.051 | 0.340 | 0.410 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.271 | 0.795 | ||
0.050 | 0.323 | 0.845 | ||
t test | 0.051 | 0.331 | 0.872 | |
0.052 | 0.411 | 0.934 | ||
0.055 | 0.429 | 0.954 | ||
0.052 | 0.466 | 0.970 | ||
0.049 | 0.338 | 0.812 | ||
0.053 | 0.401 | 0.888 | ||
EL test | 0.051 | 0.432 | 0.912 | |
0.052 | 0.467 | 0.950 | ||
0.054 | 0.481 | 0.962 | ||
0.052 | 0.552 | 0.989 | ||
Method | (Size) | (Power) | (Power) | |
0.052 | 0.612 | 0.950 | ||
0.053 | 0.729 | 0.973 | ||
t test | 0.051 | 0.754 | 0.987 | |
0.050 | 0.831 | 0.990 | ||
0.052 | 0.849 | 1.000 | ||
0.050 | 0.914 | 1.000 | ||
0.051 | 0.677 | 0.959 | ||
0.052 | 0.742 | 0.988 | ||
EL test | 0.054 | 0.777 | 0.995 | |
0.052 | 0.843 | 0.999 | ||
0.051 | 0.864 | 1.000 | ||
0.053 | 0.925 | 1.000 |
Method | |||||
---|---|---|---|---|---|
t test | 0.423 | 0.231 | 0.115 | < | |
EL test | 0.146 | 0.047 | 0.032 | < |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yuan, M. Weighted Graph-Based Two-Sample Test via Empirical Likelihood. Mathematics 2024, 12, 2745. https://doi.org/10.3390/math12172745
Zhao X, Yuan M. Weighted Graph-Based Two-Sample Test via Empirical Likelihood. Mathematics. 2024; 12(17):2745. https://doi.org/10.3390/math12172745
Chicago/Turabian StyleZhao, Xiaofeng, and Mingao Yuan. 2024. "Weighted Graph-Based Two-Sample Test via Empirical Likelihood" Mathematics 12, no. 17: 2745. https://doi.org/10.3390/math12172745
APA StyleZhao, X., & Yuan, M. (2024). Weighted Graph-Based Two-Sample Test via Empirical Likelihood. Mathematics, 12(17), 2745. https://doi.org/10.3390/math12172745