Hybrid Fuzzy Method for Performance Evaluation of City Construction
Abstract
:1. Introduction
- This study proposes a fuzzy CPI for conducting structured performance evaluations of city construction based on limited data and fuzzy data, which helps government departments take precise measures to address the shortcomings of city construction.
- This study considers various types of indicators involved in the performance evaluation of city construction and discusses how changes in these indicators impact city construction.
- Considering the limited resources and optimization, this study uses fuzzy AD to conduct a computational analysis of city construction performance. This not only provides a new perspective for evaluating city construction performance but also extends and deepens the findings of previous research.
- Finally, based on empirical analysis, this study provides powerful recommendations for city construction across different countries and regions.
2. Fuzzy City Performance Index
2.1. City Performance Index and Its 100% × (1 − α) Confidence Interval
2.2. Fuzzy Estimator for City Performance Index
3. Fuzzy AD Based on the Performance Evaluation Level of City Construction
4. Results
4.1. Operational Procedure for Performance Evaluation of City Construction
4.1.1. Phase 1: Pre–Assessment
4.1.2. Phase 2: Rank
4.2. An Application Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shimada, K.; Tanaka, Y.; Gomi, K.; Matsuoka, Y. Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga prefecture in Japan. Energy Policy 2007, 35, 4688–4703. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Does smart city policy lead to sustainability of cities? Land Use Policy 2018, 73, 49–58. [Google Scholar] [CrossRef]
- Hajmohammadi, H.; Heydecker, B. Evaluation of air quality effects of the London ultra-low emission zone by state-space modelling. Atmos. Pollut. Res. 2022, 13, 101514. [Google Scholar] [CrossRef]
- Wang, K. Available online: https://www.neaspec.org/sites/default/files/2.%20KRIHS%20Kwangik%20Wang%20-%20Korea_Green_City.pdf (accessed on 6 June 2024).
- Su, M.; Liang, C.; Chen, B.; Chen, S.; Yang, Z. Low-carbon development patterns: Observations of typical Chinese cities. Energies 2012, 5, 291–304. [Google Scholar] [CrossRef]
- Yin, H.; Qian, Y.; Zhang, B.; Pérez, R. Urban construction and firm green innovation: Evidence from China’s low-carbon pilot city initiative. Pac-Basin Financ. J. 2023, 80, 102070. [Google Scholar] [CrossRef]
- Manman, L.; Goswami, P.; Mukherjee, P.; Mukherjee, A.; Yang, L.; Ghosh, U.; Menon, V.G.; Qi, Y.; Nkenyereye, L. Distributed artificial intelligence empowered sustainable cognitive radio sensor networks: A smart city on-demand perspective. Sustain. Cities Soc. 2021, 75, 103265. [Google Scholar] [CrossRef]
- Du, B.; Steven, I.; Chien, J. Feasibility of shoulder use for highway work zone optimization. J. Traffic Transport. Eng. 2014, 1, 235–246. [Google Scholar] [CrossRef]
- Noland, R.B.; Hanson, C.S. Life-cycle greenhouse gas emissions associated with a highway reconstruction: A New Jersey case study. J. Clean. Prod. 2015, 107, 731–740. [Google Scholar] [CrossRef]
- Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 2016, 352, 940–943. [Google Scholar] [CrossRef]
- Hukkalainen, M.; Virtanen, M.; Paiho, S.; Airaksinen, M. Energy planning of low carbon urban areas-Examples from Finland. Sustain. Cities Soc. 2017, 35, 715–728. [Google Scholar] [CrossRef]
- Kim, K.; Yi, C.; Lee, S. Impact of urban characteristics on cooling energy consumption before and after construction of an urban park: The case of Gyeongui line forest in Seoul. Energy Build. 2019, 191, 42–51. [Google Scholar] [CrossRef]
- Li, J.; Tang, F.; Zhang, S.; Zhang, C. The effects of low-carbon city construction on bus trips. J. Public Transport. 2023, 25, 100057. [Google Scholar] [CrossRef]
- Yang, Z.; Yuan, Y.; Tan, Y. The impact and nonlinear relationship of low-carbon city construction on air quality: Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2023, 422, 138588. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Foth, M.; Kamruzzaman, M. Towards post-anthropocentric cities: Reconceptualizing smart cities to evade urban ecocide. J. Urban Technol. 2018, 26, 147–152. [Google Scholar] [CrossRef]
- Mao, C.; Wang, Z.; Yue, A.; Liu, H.; Peng, W. Evaluation of smart city construction efficiency based on multivariate data fusion: A perspective from China. Ecol. Indic. 2023, 154, 110882. [Google Scholar] [CrossRef]
- Wang, F. Does the construction of smart cities make cities green? Evidence from a quasi-natural experiment in China. Cities 2023, 140, 104436. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, P.H.; Qian, X.Y. National information consumption demonstration city construction and urban green development: A quasi-experiment from Chinese cities. Energy Econ. 2024, 130, 107313. [Google Scholar] [CrossRef]
- López-Ruiz, V.R.; Alfaro-Navarro, J.L.; Nevado-Peña, D. Knowledge-city index construction: An intellectual capital perspective. Expert Syst. Appl. 2014, 41, 5560–5572. [Google Scholar] [CrossRef]
- AlKheder, S.; Alzarari, A.; AlSaleh, H. Urban construction-based social risks assessment in hot arid countries with social network analysis. Habitat Int. 2023, 131, 102730. [Google Scholar] [CrossRef]
- Zou, Y.; Song, M.; Zhang, W.; Wang, Z. The impact of high-speed rail construction on the development of resource-based cities: A temporal and spatial perspective. Socio-Econ. Plan. Sci. 2023, 90, 101742. [Google Scholar] [CrossRef]
- Chen, M.; Su, Y.; Piao, Z.; Zhu, J.; Yue, X. The green innovation effect of urban energy saving construction: A quasi-natural experiment from new energy demonstration city policy. J. Clean. Prod. 2023, 428, 139392. [Google Scholar] [CrossRef]
- Wu, H.; Chen, R.; Yuan, H.; Yong, Q.; Weng, X.; Zuo, J.; Zillante, G. An evaluation model for city-scale construction and demolition waste management effectiveness: A case study in China. Waste Manag. 2024, 182, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, L.; Liang, W.; Li, W.; Du, M. Key factors identification and dynamic fuzzy assessment of health, safety and environment performance in petroleum enterprises. Saf. Sci. 2017, 94, 77–84. [Google Scholar] [CrossRef]
- Yang, J.; Chen, F.; Wang, Y.; Mao, J.; Wang, D. Performance evaluation of ecological transformation of mineral resource-based cities: From the perspective of stage division. Ecol. Indic. 2023, 154, 110540. [Google Scholar] [CrossRef]
- Yang, C.M.; Li, S.; Huang, D.; Lo, W. Performance evaluation of carbon-neutral cities based on fuzzy AHP and HFS-VIKOR. Systems 2024, 12, 173. [Google Scholar] [CrossRef]
- Li, Y.; Li, J. Method development and empirical research in examining the construction of China’s “Zero-waste Cities”. Sci. Total Environ. 2024, 906, 167345. [Google Scholar] [CrossRef]
- Wilson, D.C.; Rodic, L.; Cowing, M.J.; Velis, C.A.; Whiteman, A.D.; Scheinberg, A.; Vilches, R.; Masterson, D.; Stretz, J.; Oelz, B. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Manag. 2015, 35, 329–342. [Google Scholar] [CrossRef]
- Seker, S.; Aydin, N.; Tuzkaya, U.R. What is Needed to design sustainable and resilient cities: Neutrosophic fuzzy based DEMATEL for designing cities. Int. J. Disast. Risk Reduct. 2024, 108, 104569. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Wong, S.W.; Liao, S.; Lou, Y. A holistic evaluation of smart city performance in the context of China. J. Clean. Prod. 2018, 200, 667–679. [Google Scholar] [CrossRef]
- Dou, S.; Shen, Y.; Zhu, H. Fuzzy-based multi-criteria humanistic assessment system for city tunnels: From methodology to application. Tunn. Undergr. Sp. Technol. 2023, 134, 104993. [Google Scholar] [CrossRef]
- Martin, B.R. Statistics for Physical Science: An Introduction; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kutty, A.A.; Kucukvar, M.; Onat, N.C.; Ayvaz, B.; Abdella, G.M. Measuring sustainability, resilience and livability performance of European smart cities: A novel fuzzy expert-based multi-criteria decision support model. Cities 2023, 137, 104293. [Google Scholar] [CrossRef]
- Otay, İ.; Onar, S.Ç.; Öztayşi, B.; Kahraman, C. Evaluation of sustainable energy systems in smart cities using a Multi-Expert Pythagorean fuzzy BWM & TOPSIS methodology. Expert Syst. Appl. 2024, 250, 123874. [Google Scholar]
- Buckley, J.J. Fuzzy statistics: Hypothesis testing. Soft Comput. 2005, 9, 512–518. [Google Scholar] [CrossRef]
- Chen, K.S.; Wang, C.H.; Tan, K.H.; Chiu, S.F. Developing one-sided specification six-sigma fuzzy quality index and testing model to measure the process performance of fuzzy information. Int. J. Prod. Econ. 2019, 208, 560–565. [Google Scholar] [CrossRef]
- Büyüközkan, G. An integrated fuzzy multi-criteria group decision-making approach for green supplier evaluation. Int. J. Prod. Res. 2012, 50, 2892–2909. [Google Scholar] [CrossRef]
- Ighravwe, D.E.; Oke, S.A. A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria. J. Build. Eng. 2019, 24, 100753. [Google Scholar] [CrossRef]
- Wu, X.; Liao, H. Utility-based hybrid fuzzy axiomatic design and its application in supply chain finance decision making with credit risk assessments. Comput. Ind. 2020, 114, 103144. [Google Scholar]
- Feng, J.; Xu, S.X.; Li, M. A novel multi-criteria decision-making method for selecting the site of an electric-vehicle charging station from a sustainable perspective. Sustain. Cities Soc. 2021, 65, 102623. [Google Scholar] [CrossRef]
- Gölcük, İ. An interval type-2 fuzzy axiomatic design method: A case study for evaluating blockchain deployment projects in supply chain. Inform. Sci. 2022, 602, 159–183. [Google Scholar] [CrossRef]
- Kandemir, I.; Cicek, K. Development an instructional design model selection approach for maritime education and training using fuzzy axiomatic design. Educ. Inf. Technol. 2023, 28, 11291–11312. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Yang, K.; Liu, D.; He, L.; Qin, Q.; Wang, Y. An integrating spherical fuzzy AHP and axiomatic design approach and its application in human-machine interface design evaluation. Eng. Appl. Artif. Intel. 2023, 125, 106746. [Google Scholar] [CrossRef]
- Kulak, O.; Kahraman, C. Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Inform. Sci. 2005, 170, 191–210. [Google Scholar] [CrossRef]
Level | TFN | Achievement Rate (AR) | |
---|---|---|---|
Excellent | 6 > | (0, 6, 6) | AR ≥ 99.9999998% |
Very good | 5 ≤ < 6 | (0, 5, 5) | AR ≥ 99.9999426% |
Good | 4 ≤ < 5 | (0, 4, 4) | AR ≥ 99.9936657% |
Acceptable | 3 ≤ < 4 | (0, 3, 3) | AR ≥ 99.7300203% |
Poor | < 3 | <(0, 3, 3) | AR < 99.7300203% |
Indicator | Calculation Formula | Unit | Type | Benchmark Value |
---|---|---|---|---|
CO2 emissions per capita (X1) | CO2 emissions/total population | Ton/person | Cost | <7.28 |
Proportion of tertiary industry (X2) | Tertiary sector output/total gross domestic product (GDP) | % | Benefit | >52.6% |
Electricity consumption per capita (X3) | Total electricity consumption/total population | KWh/person | Cost | <7500 KWh |
Proportion of coal consumption in total primary energy consumption (X4) | Coal consumption/primary energy consumption | % | Cost | <27% |
Public buses per capita (X5) | Buses/total population | Buses/10,000 people | Benefit | >12 buses |
Rail length per capita (X6) | Rail length/total population | mm | Benefit | >17 mm |
Indicator | City | |||||
---|---|---|---|---|---|---|
Tianjin | Chongqing | Shenzhen | Xiamen | Hangzhou | Guiyang | |
X1 | −0.872 | 11.571 | −4.566 | −1.132 | 0.480 | 7.710 |
X2 | 1.391 | −1.125 | 7.331 | 3.433 | 3.645 | 5.638 |
X3 | −2.734 | 21.702 | −15.365 | −23.021 | −11.276 | 3.772 |
X4 | −13.291 | −42.391 | 5.436 | 6.892 | 0.738 | −2.192 |
X5 | −4.029 | −32.056 | 7.138 | 3.398 | 2.261 | −22.807 |
X6 | 1.265 | −10.378 | 12.158 | 0.118 | −1.790 | −4.517 |
Indicator | City | |||||
---|---|---|---|---|---|---|
Tianjin | Chongqing | Shenzhen | Xiamen | Hangzhou | Guiyang | |
X1 | − | (2.63, 10.6, 22.31) | − | − | (0.11, 0.47, 0.93) | (1.75, 7.06, 14.87) |
X2 | (0.32, 1.27, 2.69) | − | (1.67, 6.72, 14.14) | (0.78, 3.14, 6.62) | (0.83, 3.34, 7.03) | (1.28, 5.16, 10.87) |
X3 | − | (1.54, 18.07, 49.96) | − | − | − | (0.27, 3.14, 8.69) |
X4 | − | − | (0.38, 4.53, 12.52) | (0.49, 5.74, 15.87) | (0.05, 0.61, 1.71) | − |
X5 | − | − | (0.51, 5.94, 16.44) | (0.24, 2.83, 7.83) | (0.16, 1.88, 5.21) | − |
X6 | (0.09, 1.05, 2.92) | − | (0.86, 10.12, 27.99) | (0.01, 0.1, 0.28) | − | − |
Indicator | City | |||||
---|---|---|---|---|---|---|
Tianjin | Chongqing | Shenzhen | Xiamen | Hangzhou | Guiyang | |
X1 | − | 1.79 | − | − | 2.53 | 0.63 |
X2 | 1.21 | − | 0.50 | 0.32 | 0.09 | 0.01 |
X3 | − | 2.99 | − | − | − | 0.24 |
X4 | − | − | 0.03 | 0.27 | 1.79 | − |
X5 | − | − | 0.34 | 0.32 | 0.64 | − |
X6 | 1.19 | − | 1.52 | 4.09 | − | − |
Indicator | City | |||||
---|---|---|---|---|---|---|
Tianjin | Chongqing | Shenzhen | Xiamen | Hangzhou | Guiyang | |
X1 | 3 | 5 | 1 | 2 | 4 | 6 |
X2 | 2 | 1 | 3 | 4 | 5 | 6 |
X3 | 4 | 5 | 2 | 1 | 3 | 6 |
X4 | 2 | 1 | 6 | 5 | 4 | 3 |
X5 | 3 | 1 | 5 | 6 | 4 | 2 |
X6 | 6 | 1 | 5 | 4 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-M.; Hsu, C.-H.; Chen, T.; Li, S. Hybrid Fuzzy Method for Performance Evaluation of City Construction. Mathematics 2024, 12, 2792. https://doi.org/10.3390/math12172792
Yang C-M, Hsu C-H, Chen T, Li S. Hybrid Fuzzy Method for Performance Evaluation of City Construction. Mathematics. 2024; 12(17):2792. https://doi.org/10.3390/math12172792
Chicago/Turabian StyleYang, Chun-Ming, Chang-Hsien Hsu, Tian Chen, and Shiyao Li. 2024. "Hybrid Fuzzy Method for Performance Evaluation of City Construction" Mathematics 12, no. 17: 2792. https://doi.org/10.3390/math12172792
APA StyleYang, C. -M., Hsu, C. -H., Chen, T., & Li, S. (2024). Hybrid Fuzzy Method for Performance Evaluation of City Construction. Mathematics, 12(17), 2792. https://doi.org/10.3390/math12172792