Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Proofs of Main Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sato, K. Lévy Process and Infinitely Divisible Distributions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chan, W.S.; Yang, H.; Zhang, L. Some results on ruin probabilities in a two-dimensional risk model. Insur. Math. Econ. 2003, 32, 345–358. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Tang, Q. On the ruin probabilities of a bidimensional perturbed risk model. Insur. Math. Econ. 2007, 41, 185–195. [Google Scholar] [CrossRef]
- Chen, Y.; Yuen, K.C.; Ng, K.W. Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims. Appl. Stoch. Model. Bus. Ind. 2011, 27, 290–300. [Google Scholar] [CrossRef]
- Cheng, D.; Yang, Y.; Wang, X. Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims. Jpn. J. Ind. Appl. Math. 2020, 37, 657–675. [Google Scholar] [CrossRef]
- Cheng, D. Uniform asymptotics for the finite-time ruin probability of a generalized bidimensional risk model with Brownian perturbations. Stochastics 2019, 93, 56–71. [Google Scholar] [CrossRef]
- Li, J. A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation. Stat. Probab. Lett. 2018, 140, 23–32. [Google Scholar] [CrossRef]
- Yang, H.; Li, J. Asymptotic ruin probabilities for a bidimensional renewal risk model. Stochastics 2017, 89, 687–708. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, D.; Chen, Z. Asymptotic behavior for finite-time ruin probabilities in a generalized bidimensional risk model with subexponential claims. Jpn. J. Ind. Appl. Math. 2021, 38, 947–963. [Google Scholar] [CrossRef]
- Wang, K.; Chen, L.; Yang, Y.; Gao, M. The finite-time ruin probability of risk model with stochastic return and Brownian perturbation. Jpn. J. Ind. Appl. Math. 2018, 35, 1173–1189. [Google Scholar] [CrossRef]
- Xun, B.; Yuen, K.C.; Wang, K. The finite-time ruin probability of a risk model with a general counting process and stochastic return. J. Ind. Manag. Optim. 2022, 18, 1541–1556. [Google Scholar] [CrossRef]
- Xu, C.; Wang, K.; Wu, X. The finite-time ruin probability of a risk model with stochastic return and subexponential claim sizes. Commun. Stat.-Theory Methods 2024, 53, 2194–2204. [Google Scholar] [CrossRef]
- Dirma, M.; Paukštys, S.; Šiaulys, J. Tails of the moments for sums with dominatedly varying random summands. Mathematics 2021, 9, 824. [Google Scholar] [CrossRef]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Springer: Berlin, Germany, 1997. [Google Scholar]
- Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ko, B.; Tang, Q. Sums of dependent nonnegative random variables with subexponential tails. J. Appl. Probab. 2008, 45, 85–94. [Google Scholar] [CrossRef]
- Jiang, T.; Gao, Q.; Wang, Y. Max-sum equivalence of conditionally dependent random variables. Stat. Probab. Lett. 2014, 84, 60–66. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, J.; Huang, C.; Ma, X. The finite-time ruin probability in two non-standard renewal risk models with constant interest rate and dependent subexponential claims. J. Korean Stat. Soc. 2012, 41, 213–224. [Google Scholar] [CrossRef]
- Yang, H.; Li, J. Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Insur. Math. Econ. 2014, 58, 185–192. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Zhang, Z. Finite-time ruin probability of a perturbed risk model with dependent main and delayed claims. Nonlinear Anal. Model. Control 2021, 26, 801–820. [Google Scholar] [CrossRef]
- Cline, D.B.H.; Samorodnitsky, G. Subexponentiality of the product of independent random variables. Stoch. Process. Their Appl. 1994, 49, 75–98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Wang, K.; Yang, Y. Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims. Mathematics 2024, 12, 2969. https://doi.org/10.3390/math12192969
Shen X, Wang K, Yang Y. Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims. Mathematics. 2024; 12(19):2969. https://doi.org/10.3390/math12192969
Chicago/Turabian StyleShen, Xiaowen, Kaiyong Wang, and Yang Yang. 2024. "Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims" Mathematics 12, no. 19: 2969. https://doi.org/10.3390/math12192969
APA StyleShen, X., Wang, K., & Yang, Y. (2024). Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims. Mathematics, 12(19), 2969. https://doi.org/10.3390/math12192969