Mathematical Modeling and Simulation in Mechanics and Dynamic Systems, 2nd Edition
1. Introduction
2. Statistics of the Special Issue
- (1)
- Vlase, S.; Marin, M.; Negrean, I.N. Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review. Mathematics 2022, 10, 257. https://doi.org/10.3390/math10020257.
- (2)
- Xia, S.; Xia, Y.; Xiang, J. Modelling and Fault Detection for Specific Cavitation Damage Based on the Discharge Pressure of Axial Piston Pumps. Mathematics 2022, 10, 2461. https://doi.org/10.3390/math10142461.
- (3)
- Faizan, M.; Ali, F.; Loganathan, K.; Zaib, A.; Reddy, C.A.; Abdelsalam, S.I. Entropy Analysis of Sutterby Nanofluid Flow over a Riga Sheet with Gyrotactic Microorganisms and Cattaneo–Christov Double Diffusion. Mathematics 2022, 10, 3157. https://doi.org/10.3390/math10173157.
- (4)
- Paliathanasis, A.; Leon, G.; Leach, P.G.L. Lie Symmetry Classification and Qualitative Analysis for the Fourth-Order Schrödinger Equation. Mathematics 2022, 10, 3204. https://doi.org/10.3390/math10173204.
- (5)
- El Ouadefli, L.; El Akkad, A.; El Moutea, O.; Moustabchir, H.; Elkhalfi, A.; Scutaru, L.M.; Muntean, R. Numerical Simulation for Brinkman System with Varied Permeability Tensor. Mathematics 2022, 10, 3242. https://doi.org/10.3390/math10183242.
- (6)
- Teng, Y.; Wen, Q.; Xie, L.; Wen, B. Study on Vibration Friction Reducing Mechanism of Materials. Mathematics 2022, 10, 3529. https://doi.org/10.3390/math10193529.
- (7)
- Tutak, M.; Brodny, J.; John, A.; Száva, J.; Vlase, S.; Scutaru, M.L. CFD Model Studies of Dust Dispersion in Driven Dog Headings. Mathematics 2022, 10, 3798. https://doi.org/10.3390/math10203798.
- (8)
- Scutaru, M.L.; Marin, M.; Vlase, S. Dynamic Absorption of Vibration in a Multi Degree of Freedom Elastic System. Mathematics 2022, 10, 4045. https://doi.org/10.3390/math10214045.
- (9)
- Fetecau, C.; Rauf, A.; Qureshi, T.M.; Vieru, D. Steady-State Solutions for MHD Motions of Burgers’ Fluids through Porous Media with Differential Expressions of Shear on Boundary and Applications. Mathematics 2022, 10, 4228. https://doi.org/10.3390/math10224228.
- (10)
- Medrano-Hermosillo, J.A.; Lozoya-Ponce, R.; Rodriguez-Mata, A.E.; Baray-Arana, R. Phase-Space Modeling and Control of Robots in the Screw Theory Framework Using Geometric Algebra. Mathematics 2023, 11, 572. https://doi.org/10.3390/math11030572.
- (11)
- Száva, I.; Vlase, S.; Száva, I.-R.; Turzó, G.; Munteanu, V.M.; Gălățanu, T.; Asztalos, Z.; Gálfi, B.-P. Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves. Mathematics 2023, 11, 741. https://doi.org/10.3390/math11030741.
- (12)
- El Moutea, O.; El Ouadefli, L.; El Akkad, A.; Nakbi, N.; Elkhalfi, A.; Scutaru, M.L.; Vlase, S. A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition. Mathematics 2023, 11, 1943. https://doi.org/10.3390/math11081943.
- (13)
- Cao, J.; Chen, H. Mathematical Model for Fault Handling of Singular Nonlinear Time-Varying Delay Systems Based on T-S Fuzzy Model. Mathematics 2023, 11, 2547. https://doi.org/10.3390/math11112547.
3. Authors of the Special Issue
4. Brief Overview of the Contributions to the Special Issue
Author Contributions
Conflicts of Interest
References
- Marin, M.; Seadawy, A.; Vlase, S.; Chirila, A. On mixed problem in thermoelasticity of type III for Cosserat media. J. Taibah Univ. Sci. 2022, 16, 1264–1274. [Google Scholar] [CrossRef]
- Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three-Dimensional Finite Element. Symmetry 2020, 12, 321. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Öchsner, A. Considerations of the transverse vibration of a mechanical system with two identical bars. Proc. Inst. Mech. Eng. Part L—J. Mater.—Des. Appl. 2019, 233, 1318–1323. [Google Scholar] [CrossRef]
- Vlase, S.; Teodorescu, P.P.; Itu, C.; Scutaru, M.L. Elasto-Dynamics of a Solid with a General “Rigid” Motion using FEM Model. Part II. Analysis of a Double Cardan Joint. Rom. J. Phys. 2013, 58, 882–892. [Google Scholar]
- Negrean, I.; Crisan, A.V.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95. [Google Scholar] [CrossRef]
- Marin, M.; Chirila, A.; Öchsner, A.; Vlase, S. About finite energy solutions in thermoelasticity of micropolar bodies with voids. Bound. Value Probl. 2019, 2019, 89. [Google Scholar] [CrossRef]
- Vlase, S.; Negrean, I.; Marin, M.; Nastac, S. Kane’s Method-Based Simulation and Modeling Robots with Elastic Elements, Using Finite Element Method. Mathematics 2020, 8, 805. [Google Scholar] [CrossRef]
Country | Number of Authors |
---|---|
Romania | 13 |
China | 9 |
Spania | 1 |
India | 2 |
Pakistan | 5 |
Egypt | 1 |
Morocco | 6 |
South Africa | 3 |
Chile | 2 |
Poland | 3 |
Mexico | 4 |
Hungary | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scutaru, M.L.; Pruncu, C.-I. Mathematical Modeling and Simulation in Mechanics and Dynamic Systems, 2nd Edition. Mathematics 2024, 12, 341. https://doi.org/10.3390/math12020341
Scutaru ML, Pruncu C-I. Mathematical Modeling and Simulation in Mechanics and Dynamic Systems, 2nd Edition. Mathematics. 2024; 12(2):341. https://doi.org/10.3390/math12020341
Chicago/Turabian StyleScutaru, Maria Luminita, and Catalin-Iulian Pruncu. 2024. "Mathematical Modeling and Simulation in Mechanics and Dynamic Systems, 2nd Edition" Mathematics 12, no. 2: 341. https://doi.org/10.3390/math12020341
APA StyleScutaru, M. L., & Pruncu, C.-I. (2024). Mathematical Modeling and Simulation in Mechanics and Dynamic Systems, 2nd Edition. Mathematics, 12(2), 341. https://doi.org/10.3390/math12020341