II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping
Abstract
:1. Introduction
2. Methodology
2.1. Preliminaries
2.1.1. Rock Discontinuity Clustering
2.1.2. Optimal Transport
2.1.3. Learning-Augmented Method
2.2. Improved Initialization of Clustering Centers
Algorithm 1 Improved Initialization of Clustering Centers |
Require: dataset D and clustering number k 1: Initialize an empty set of candidate centers 2: Select an initial center randomly from the dataset D and add it to 3: for to k do 4: For each point , find the minimum squared distance to any center in 5: Choose a new center from D with probability proportional to 6: Add to 7: end for 8: Compute the cost matrix M between candidate centers in and points in D 9: Apply the Sinkhorn algorithm to M to obtain the optimal transport plan 10: Use to adjust the centers in to minimize the overall cost to the dataset D 11: return final initial centers C |
2.3. Learning-Augmented Refinement
Algorithm 2 Learning-Augmented Refinement |
Require: dataset D with m rock discontinuities, primary clustering result , and error-tolerant rate 1: for to k do 2: for to n do 3: Let be the collection of all subsets of discontinuities in 4: For collection Z, define 5: 6: end for 7: Let 8: end for 9: return final centers |
2.4. Overall Algorithm Steps
- Determine the initial clustering number k. If the method is conducted on an artificial dataset, k is fixed; otherwise, it is initialized to 2.
- Translate and to according to Equation (1).
- Normalize the dataset D according to Equation (4). The clustering result will be more robust after appropriate normalization since it can avoid the influence of feature magnitude.
- Initialize an empty candidate center set and add a random discontinuity in D. Then, sequentially add new centers that are as far away from the existing ones as possible.
- Leverage optimal transport to further minimize the transportation cost between centers and the dataset and obtain the final initial centers C.
- Apply the KM algorithm to D and C to obtain primary clustering result .
- Apply learning-augmented refinement to D, , and error rate . The refined centers are considered the final clustering centers, and each discontinuity is grouped with the closest center.
- For the real dataset, perform and re-conduct the approach until k reaches the threshold. Determine the final clustering number through evaluation metrics.
3. Results
3.1. Experimental Setup
3.2. Artificial Dataset
3.3. Real Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Priest, S.D. Discontinuity Analysis for Rock Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Brady, B.H.; Brown, E.T. Rock Mechanics: For Underground Mining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Giani, G.P. Rock Slope Stability Analysis; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P. The influence of structural setting and lithology on landslide type and pattern. Environ. Eng. Geosci. 1996, 2, 531–555. [Google Scholar] [CrossRef]
- Brideau, M.A. The Influence of Tectonic Structures on Rock Mass Quality and Implications for Rock Slope Stability. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2005. [Google Scholar]
- Dong, F.R.; Wang, S.H.; Hou, Q.K. Study of multi-parameter dominant grouping method of rock mass discontinuity based on the principal component analysis. Rock Soil Mech. 2022, 43, 3. [Google Scholar]
- Hammah, R.E. Intelligent Delineation of Rock Discontinuity Data Using Fuzzy Cluster Analysis. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2000. [Google Scholar]
- Shanley, R.J.; Mahtab, M. Delineation and analysis of clusters in orientation data. J. Int. Assoc. Math. Geol. 1976, 8, 9–23. [Google Scholar] [CrossRef]
- Mahtab, M.; Yegulalp, T. A rejection criterion for definition of clusters in orientation data. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Berkeley, CA, USA, 25–27 August 1982. [Google Scholar]
- Brown, E.T.; International Society for Rock Mechanics. Rock Characterization, Testing & Monitoring: ISRM Suggested Methods; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Dershowitz, W.; Busse, R.; Geier, J.; Uchida, M. A stochastic approach for fracture set definition. In Proceedings of the ARMA North America Rock Mechanics Symposium, Montreal, QC, Canada, 19–21 June 1996. [Google Scholar]
- Shirazi, A.; Hezarkhani, A.; Pour, A.B. Fusion of lineament factor (Lf) map analysis and multifractal technique for massive sulfide copper exploration: The Sahlabad area, East Iran. Minerals 2022, 12, 549. [Google Scholar] [CrossRef]
- Shirazi, A.; Hezarkhani, A.; Beiranvand Pour, A.; Shirazy, A.; Hashim, M. Neuro-Fuzzy-AHP (NFAHP) technique for copper exploration using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and geological datasets in the Sahlabad mining area, east Iran. Remote Sens. 2022, 14, 5562. [Google Scholar] [CrossRef]
- Hammah, R.; Curran, J. Fuzzy cluster algorithm for the automatic identification of joint sets. Int. J. Rock Mech. Min. Sci. 1998, 35, 889–905. [Google Scholar] [CrossRef]
- Zhou, W.; Maerz, N.H. Implementation of multivariate clustering methods for characterizing discontinuities data from scanlines and oriented boreholes. Comput. Geosci. 2002, 28, 827–839. [Google Scholar] [CrossRef]
- Jimenez-Rodriguez, R.; Sitar, N. A spectral method for clustering of rock discontinuity sets. Int. J. Rock Mech. Min. Sci. 2006, 43, 1052–1061. [Google Scholar] [CrossRef]
- Xu, L.M.; Chen, J.P.; Wang, Q.; Zhou, F.J. Fuzzy C-Means Cluster Analysis Based on Mutative Scale Chaos Optimization Algorithm for the Grouping of Discontinuity Sets. Rock Mech. Rock Eng. 2013, 46, 189–198. [Google Scholar] [CrossRef]
- Guo, H.; Kaiser, W.J.; Mocarski, E.S. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med. Microbiol. Immunol. 2015, 204, 439–448. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.D.; Xu, Z.H. Identification of rock discontinuity sets based on a modified affinity propagation algorithm. Int. J. Rock Mech. Min. Sci. 2017, 94, 32–42. [Google Scholar] [CrossRef]
- Mehrishal, S.; Kim, J.; Song, J.J.; Sainoki, A. A semi-automatic approach for joint orientation recognition using 3D trace network analysis. Eng. Geol. 2024, 332, 107462. [Google Scholar] [CrossRef]
- Su, X.L.; Jia, X.J.; Xie, C.D.; Peng, K.C. Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 2014, 57, 1210–1217. [Google Scholar] [CrossRef]
- Song, T.J.; Chen, J.P.; Zhang, W.; Song, S.Y. Clustering Analysis of Dominative Attitudes of Rock Mass Structural Plane Based on Firefly Algorithm. Dongb Daxue Xuebao/J. Northeast. Univ. 2015, 36, 284–287. [Google Scholar]
- Wang, S.H.; Ren, Y.P.; Chen, J.Z.; Zhang, Z.S. An Improved Fish Swarm Clustering Algorithm for Structural Grouping. J. Northeast. Univ. 2019, 40, 420. [Google Scholar]
- Hemasian-Etefagh, F.; Safi-Esfahani, F. Group-based whale optimization algorithm. Soft Comput. 2020, 24, 3647–3673. [Google Scholar] [CrossRef]
- Yi, X.; Feng, W.; Wu, W.; Zhou, Y.; Dong, S. An Effective Approach for Determining Rock Discontinuity Sets Using a Modified Whale Optimization Algorithm. Rock Mech. Rock Eng. 2023, 56, 6143–6155. [Google Scholar] [CrossRef]
- Liu, T.; Zheng, J.; Deng, J. A new iteration clustering method for rock discontinuity sets considering discontinuity trace lengths and orientations. Bull. Eng. Geol. Environ. 2021, 80, 413–428. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Tan, C.; Zhan, J.; Song, S.; Xu, W.; Yan, J.; Zhang, Y.; Zhao, M.; Wang, Q. Intelligent scanning for optimal rock discontinuity sets considering multiple parameters based on manifold learning combined with UAV photogrammetry. Eng. Geol. 2022, 309, 106851. [Google Scholar] [CrossRef]
- Wu, W.; Feng, W.; Yi, X.; Zhao, J.; Zhou, Y. Sparrow search algorithm-driven clustering analysis of rock mass discontinuity sets. Comput. Geosci. 2024, 28, 615–627. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, S.; Yong, R.; Xiu, Z.; Han, W.; Zhang, Z. A method for clustering rock discontinuities with multiple properties based on an improved netting algorithm. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 23. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Wang, Q. Study of method for multivariate parameter dominant partitioning of discontinuities of rock mass. Yantu Lixue/Rock Soil Mech. 2013, 34, 189–195. [Google Scholar]
- Li, Y.; Wang, Q.; Chen, J.; Xu, L.; Song, S. K-means algorithm based on particle swarm optimization for the identification of rock discontinuity sets. Rock Mech. Rock Eng. 2015, 48, 375–385. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Lü, Q.; Guo, J.; He, M.; Deng, J. A multidimensional clustering analysis method for dividing rock mass homogeneous regions based on the shape dissimilarity of trace maps. Rock Mech. Rock Eng. 2020, 53, 3937–3952. [Google Scholar] [CrossRef]
- Laclau, C.; Redko, I.; Matei, B.; Bennani, Y.; Brault, V. Co-clustering through optimal transport. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1955–1964. [Google Scholar]
- Del Barrio, E.; Cuesta-Albertos, J.A.; Matrán, C.; Mayo-Íscar, A. Robust clustering tools based on optimal transportation. Stat. Comput. 2019, 29, 139–160. [Google Scholar] [CrossRef]
- Chakraborty, S.; Paul, D.; Das, S. Hierarchical clustering with optimal transport. Stat. Probab. Lett. 2020, 163, 108781. [Google Scholar] [CrossRef]
- Fajgelbaum, P.D.; Schaal, E. Optimal transport networks in spatial equilibrium. Econometrica 2020, 88, 1411–1452. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Li, Z.; Yoshie, O.; Sun, J. Ota: Optimal transport assignment for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 303–312. [Google Scholar]
- Sinkhorn, R. Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 1967, 74, 402–405. [Google Scholar] [CrossRef]
- Awasthi, P.; Balcan, M.F.; Voevodski, K. Local algorithms for interactive clustering. J. Mach. Learn. Res. 2017, 18, 1–35. [Google Scholar]
- Vikram, S.; Dasgupta, S. Interactive bayesian hierarchical clustering. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2081–2090. [Google Scholar]
- Ergun, J.C.; Feng, Z.; Silwal, S.; Woodruff, D.P.; Zhou, S. Learning-Augmented k-means Clustering. In Proceedings of the Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. [Google Scholar]
- Nguyen, T.D.; Chaturvedi, A.; Nguyen, H.L. Improved Learning-augmented Algorithms for k-means and k-medians Clustering. In Proceedings of the Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Lin, H.; Luo, T.; Woodruff, D. Learning augmented binary search trees. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 13431–13440. [Google Scholar]
- Chen, J.; Silwal, S.; Vakilian, A.; Zhang, F. Faster fundamental graph algorithms via learned predictions. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 3583–3602. [Google Scholar]
- Mitzenmacher, M.; Vassilvitskii, S. Algorithms with predictions. Commun. ACM 2022, 65, 33–35. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Kapoor, A.; Singhal, A. A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms. In Proceedings of the 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 9–10 February 2017; pp. 1–6. [Google Scholar]
- Xie, X.L.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 841–847. [Google Scholar] [CrossRef]
- Cui, X.; Yan, E.c. A clustering algorithm based on differential evolution for the identification of rock discontinuity sets. Int. J. Rock Mech. Min. Sci. 2020, 126, 104181. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Sun, J. Study on the Existing State and Process Mineralogy of Gold and Tungsten in Xiangxi Gold Deposit. Master’s Thesis, Central South University, Changsha, China, 2013. [Google Scholar]
Group | Bi-Normal | Normal | Uniform | Constant | Num. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | () | (m) | (cm) | ||||||||||||||
1 | 135 | 80 | 115–164 | 55 | 20 | 47–67 | 0.5 | 0.10 | 0.23–1.21 | 1.0 | 0.8–1.18 | 1.0 | 70 | ||||
2 | 300 | 120 | 281-326 | 30 | 24 | 19–41 | 2.0 | 0.40 | 0.63–3.50 | 1.2 | 1.11–1.30 | 1.0 | 40 | ||||
3 | 30 | 75 | 11–44 | 70 | 40 | 50-86 | 3.7 | 0.45 | 2.00–5.22 | 0.5 | 0.31–0.70 | 1.0 | 40 | ||||
4 | 45 | 120 | 19–73 | 65 | 40 | 56–81 | 2.5 | 0.18 | 1.83–3.19 | 0.7 | 0.51–0.79 | 1.0 | 30 | ||||
5 | 255 | 40 | 238–271 | 40 | 30 | 28–51 | 6.0 | 0.40 | 5.26–7.51 | 0.2 | 0.15–0.25 | 1.0 | 20 |
Method | Clustering Results | ||||
---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | |
Avg. | −1.25, −0.42(70) | −0.87, 1.11(40) | 1.31, −0.23(40) | 0.53, −0.49(30) | 2.71, 0.44(20) |
KM | −1.08, −0.56(36) | −0.87, 1.11(40) | 0.97, −0.34(70) | −1.43, −0.26(34) | 2.71, 0.44(20) |
FCM | −1.23, −0.43(70) | −0.69, 1.17(25) | 0.97, −0.33(70) | −1.13, −0.90(15) | 2.68, 0.42(20) |
KM++ | −1.25, −0.42(70) | −0.87, 1.11(40) | 1.41, −0.22(33) | 0.58, −0.45(37) | 2.71, 0.44(20) |
Ours | −1.24, −0.45(70) | −0.89, 1.12(40) | 1.37, −0.20(35) | 0.55, −0.48(35) | 2.70, 0.43(20) |
Method | ACC ↑ | XB ↓ | SS ↑ | ACC↑ | XB↓ | SS↑ |
---|---|---|---|---|---|---|
KM | 0.830 | 0.744 | 0.565 | 0.815 | 0.773 | 0.532 |
FCM | 0.850 | 0.569 | 0.615 | 0.850 | 0.638 | 0.590 |
KM++ | 0.965 | 0.197 | 0.616 | 0.965 | 0.197 | 0.616 |
Ours | 0.975 | 0.194 | 0.617 | 0.973 | 0.196 | 0.617 |
Method | Clustering Results | |||
---|---|---|---|---|
G1 | G2 | G3 | G4 | |
KM | −0.23, −0.23(79) | 2.09, 0.35(32) | −1.18, −0.02(94) | 1.95, 0.28(32) |
FCM | 0.09, −0.54(65) | −1.24, 1.23(55) | −1.19, −0.96(55) | 2.04, 0.21(62) |
KM++ | −0.17, −0.29(75) | −1.25, 1.32(45) | −1.06, −1.02(55) | 2.06, 0.29(62) |
Ours | 0.26, −0.75(43) | −1.06, 0.83(77) | −1.31, −1.08(55) | 2.19, 0.09(62) |
Method | XB ↓ | SS ↑ | XB↓ | SS↑ |
---|---|---|---|---|
KM | 1.274 | 0.311 | 1.284 | 0.306 |
FCM | 0.263 | 0.450 | 0.263 | 0.448 |
KM++ | 0.237 | 0.467 | 0.237 | 0.467 |
Ours | 0.214 | 0.468 | 0.217 | 0.468 |
Group | () | () | l (m) | w (cm) | Num. | |
---|---|---|---|---|---|---|
1 | 114.397 | 32.599 | 0.612 | 0.660 | 0.259 | 43 |
2 | 283.067 | 48.103 | 3.016 | 0.618 | 0.514 | 77 |
3 | 54.348 | 69.034 | 1.459 | 0.643 | 0.990 | 55 |
4 | 161.645 | 45.073 | 0.213 | 0.100 | 0.000 | 62 |
Clustering Number k | XB | SS |
---|---|---|
2 | 0.289 | 0.432 |
3 | 0.368 | 0.404 |
4 | 0.214 | 0.468 |
5 | 0.274 | 0.488 |
6 | 0.359 | 0.446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wu, J.; Zhao, G.; Wang, M.; Zhou, X. II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping. Mathematics 2024, 12, 3195. https://doi.org/10.3390/math12203195
Xu Y, Wu J, Zhao G, Wang M, Zhou X. II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping. Mathematics. 2024; 12(20):3195. https://doi.org/10.3390/math12203195
Chicago/Turabian StyleXu, Yihang, Junxi Wu, Guoyan Zhao, Meng Wang, and Xing Zhou. 2024. "II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping" Mathematics 12, no. 20: 3195. https://doi.org/10.3390/math12203195
APA StyleXu, Y., Wu, J., Zhao, G., Wang, M., & Zhou, X. (2024). II-LA-KM: Improved Initialization of a Learning-Augmented Clustering Algorithm for Effective Rock Discontinuity Grouping. Mathematics, 12(20), 3195. https://doi.org/10.3390/math12203195