TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method
Abstract
:1. Introduction
- Universal nonlinear domain transformer tailored to the QTT format. In particular, our transformer is suitable for curvilinear rectangles and degenerate angles, which reduces the number of subdomain splittings and simplifies their structure, leading to lower QTT ranks.
- Efficient assembly of FEM matrices in the course of iterations for a nonlinear problem and/or time stepping in a time-dependent problem. In particular, the stitching of matrices corresponding to different subdomains is free from the element-wise manipulations which are suboptimal for the TT structure. Instead, the total matrix is given simply by matrix-TT products of precomputed reference-generating matrices and a diagonal matrix made of a QTT tensor of coefficients.
2. Background
2.1. Quantized Tensor Train Format
- Basic linear algebra operations between tensors.Required operations include summation (+), Hadamard (element-wise) multiplication (∘), finding matrix–matrix and matrix–vector products (@ and respectively) and Kronecker product (). Also, in this work, an optimization-based version of matrix–matrix product () is used.
- Conversion between full and compressed format, tensor rounding.To analyze the results, it must be possible to switch between different representations of the data. The algorithms for compressing and decompressing the data are straightforward [7]. Rounding is the procedure of creating a tensor similar to the given one, but with a lower rank with specified accuracy. The rounding is required to limit the ranks that are increasing during the solution according to Table 1.
- Cross-approximation of functions.This algorithm lets one approximate a function in TT format with only function evaluations [30]. This algorithm is used to represent the Jacobian of the area transformation and to set the initial and boundary conditions.
- Matrix construction.Tensor Train format for TT-matrices allows one to perform matrix transposition, construction of a diagonal matrix from a tensor and constructing a shift matrix of given dimensions (i.e., matrix with the ones placed above the main diagonal being the only non-zero elements).
- Solution of linear systems.
2.2. Finite Element Method
3. Quantized Tensor Train Finite Element Method
3.1. Domain Splitting and Transformation
3.2. Operators Assembly in Tensor Train Format
3.3. Subdomain Concatenation
3.4. Nonlinear Operators Reassembly with Coefficients
- First evaluate the function on the quadrature points. The velocites can be evaluated in TT format on each subdomain by computing the sum of basis functions values over the finite elements (see Figure 3) and then assembled into the big vector. Another way is to use cross-approximation.
- Then, we can put the coefficient in between the matrix products in (10) and perform the standard matrix–matrix product and obtain the block-diagonal convective derivative matrices:
- Then the subdomain concatenation is performed according to (14):
- Performing the assembly by exact matrix–matrix products in Tensor Train format and truncating the excessive ranks by TT rounding. The exact multiplication takes operations, and since it is performed between two high-rank tensors/matrices, the time required between time steps is not optimal.
- Employing approximate matrix–matrix multiplication via AMEn. This iterative method requires operations, which is preferable for the high-rank case. Also, the rounding is not required since the relative tolerance is set before the call. The convergence is achieved only with a single sweep of a method because of a close initial guess from the previous time step.
3.5. Example Application: Incompressible Navier–Stokes Equations
- The predictor step. The intermediate velocity, , is computed for the momentum equation without the pressure:
- The pressure step. Then Poisson’s equation for the pressure is solved.
- The corrector step. Finally, the pressure term is added to the equation to satisfy the continuity condition.
- Compute and reassemble and as presented in Section 3.4.
- Compute the tentative velocities :
- Solve the Poisson equation for the pressure:
- Perform the corrector step:
- Impose boundary conditions with masks:
4. Numerical Results
4.1. Poisson Equation in a Triangle
- Mass and stiffness operators and masks corresponding to zero Dirichlet boundary conditions are assembled in the QTT format. The right-hand side is constructed using cross-approximation of the function.
- Boundary conditions are applied to operators:
- The right-hand side is multiplied by the mass matrix, and the stiffness matrix is inverted to find the solution:
4.2. Poisson Equation in a Quadrilateral Domain
- Use the single original quadrilateral domain, transformed into the reference domain.
- The original domain is split into two parts with the sinusoidal seam as shown in Figure 8, and each part is transformed into the reference domain.
4.3. Poisson Equation in a Circle/Annulus
4.4. Navier–Stokes Flow in a Lid-Driven Cavity
4.5. Navier–Stokes Flow in a Backward-Facing Step Domain
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PDE | Partial differential equation |
TT | Tensor Train |
QTT | Quantized Tensor Train |
FEM | Finite element method |
SVD | Singular value decomposition |
AMEn | Alternating minimal energy method |
References
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Brenner, S.; Scott, R. The Mathematical Theory of Finite Element Methods; Texts in Applied Mathematics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L.D.; Russo, A. Basic principles of Virtual Element Methods. Math. Model. Methods Appl. Sci. 2013, 23, 199–214. [Google Scholar] [CrossRef]
- Dell’Accio, F.; Di Tommaso, F.; Guessab, A.; Nudo, F. Enrichment strategies for the simplicial linear finite elements. Appl. Math. Comput. 2023, 451, 128023. [Google Scholar] [CrossRef]
- Oseledets, I. Tensor-Train Decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Oseledets, I. Constructive Representation of Functions in Low-Rank Tensor Formats. Constr. Approx. 2010, 37, 1–8. [Google Scholar] [CrossRef]
- Dolgov, S.V.; Khoromskij, B.N.; Oseledets, I.V. Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker–Planck equation. SIAM J. Sci. Comput. 2012, 34, A3016–A3038. [Google Scholar] [CrossRef]
- Schneider, R.; Uschmajew, A. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces. J. Complex. 2013. [Google Scholar] [CrossRef]
- Griebel, M.; Harbrecht, H. Analysis of tensor approximation schemes for continuous functions. Found. Comput. Math. 2023, 23, 219–240. [Google Scholar] [CrossRef]
- Bigoni, D.; Engsig-Karup, A.P.; Marzouk, Y.M. Spectral tensor-train decomposition. SIAM J. Sci. Comput. 2016, 38, A2405–A2439. [Google Scholar] [CrossRef]
- Gorodetsky, A.; Karaman, S.; Marzouk, Y. A continuous analogue of the tensor-train decomposition. Comput. Methods Appl. Mech. Engrg. 2019, 347, 59–84. [Google Scholar] [CrossRef]
- Dolgov, S.; Savostyanov, D. Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 2014, 36, 1–24. [Google Scholar] [CrossRef]
- Sozykin, K.; Chertkov, A.; Schutski, R.; Phan, A.H.; Cichocki, A.; Oseledets, I. TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning. arXiv 2022, arXiv:2205.00293. [Google Scholar]
- Morozov, D.; Melnikov, A.; Shete, V.; Perelshtein, M. Protein-protein docking using a tensor train black-box optimization method. arXiv 2023, arXiv:2302.03410. [Google Scholar]
- Novikov, A.; Podoprikhin, D.; Osokin, A.; Vetrov, D.P. Tensorizing neural networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar]
- Sagingalieva, A.; Kurkin, A.; Melnikov, A.; Kuhmistrov, D.; Perelshtein, M.; Melnikov, A.; Skolik, A.; Von Dollen, D. Hyperparameter optimization of hybrid quantum neural networks for car classification. arXiv 2022, arXiv:2205.04878. [Google Scholar]
- Naumov, A.; Melnikov, A.; Abronin, V.; Oxanichenko, F.; Izmailov, K.; Pflitsch, M.; Melnikov, A.; Perelshtein, M. Tetra-AML: Automatic Machine Learning via Tensor Networks. arXiv 2023, arXiv:2303.16214. [Google Scholar]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Dolgov, S.; Pearson, J.W. Preconditioners and Tensor Product Solvers for Optimal Control Problems from Chemotaxis. SIAM J. Sci. Comput. 2019, 41, B1228–B1253. [Google Scholar] [CrossRef]
- Gourianov, N.; Lubasch, M.; Dolgov, S.; van den Berg, Q.Y.; Babaee, H.; Givi, P.; Kiffner, M.; Jaksch, D. A quantum-inspired approach to exploit turbulence structures. Nat. Comput. Sci. 2022, 2, 30–37. [Google Scholar] [CrossRef]
- Ion, I.G.; Loukrezis, D.; De Gersem, H. Tensor train based isogeometric analysis for PDE approximation on parameter dependent geometries. Comput. Methods Appl. Mech. Eng. 2022, 401, 115593. [Google Scholar] [CrossRef]
- Ion, I.G. Low-Rank Tensor Decompositions for Surrogate Modeling in forward and inverse Problems. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, The Netherland, 2024. [Google Scholar] [CrossRef]
- Schön, C.; Solano, E.; Verstraete, F.; Cirac, J.I.; Wolf, M.M. Sequential Generation of Entangled Multiqubit States. Phys. Rev. Lett. 2005, 95, 110503. [Google Scholar] [CrossRef] [PubMed]
- Markeeva, L.; Tsybulin, I.; Oseledets, I. QTT-isogeometric solver in two dimensions. J. Comput. Phys. 2021, 424, 109835. [Google Scholar] [CrossRef]
- Kazeev, V.A.; Schwab, C. Approximation of Singularities by Quantized-Tensor FEM. PAMM 2015, 15, 743–746. [Google Scholar] [CrossRef]
- Khoromskij, B. O(dlogN)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling. Constr. Approx. 2009, 34, 257–280. [Google Scholar] [CrossRef]
- Sekmen, A.; Aldroubi, A.; Koku, A.B.; Hamm, K. Matrix resconstruction: Skeleton decomposition versus singular value decomposition. In Proceedings of the 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Seattle, WA, USA, 9–12 July 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Oseledets, I.; Tyrtyshnikov, E. TT-cross approximation for multidimensional arrays. Linear Algebra Its Appl. 2010, 432, 70–88. [Google Scholar] [CrossRef]
- White, S.R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992, 69, 2863–2866. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Other Titles in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar] [CrossRef]
- Oseledets, I. ttpy 1.2.0. 2017. Available online: https://github.com/oseledets/ttpy (accessed on 15 October 2024).
- Gordon, W.J.; Thiel, L.C. Transfinite mappings and their application to grid generation. Appl. Math. Comput. 1982, 10–11, 171–233. [Google Scholar] [CrossRef]
- Elman, H.; Silvester, D.; Wathen, A. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Temam, R. Navier–Stokes Equations: Theory and Numerical Analysis; American Mathematical Society: Providence, RI, USA, 2024; Volume 343. [Google Scholar]
- Chorin, A.J. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 1967, 73, 928–931. [Google Scholar] [CrossRef]
- Ghia, U.; Ghia, K.; Shin, C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 1982, 48, 387–411. [Google Scholar] [CrossRef]
- Melnikov, A.A.; Termanova, A.A.; Dolgov, S.V.; Neukart, F.; Perelshtein, M.R. Quantum state preparation using tensor networks. Quantum Sci. Technol. 2023, 8, 035027. [Google Scholar] [CrossRef]
- Ran, S.J. Encoding of matrix product states into quantum circuits of one- and two-qubit gates. Phys. Rev. A 2020, 101, 032310. [Google Scholar] [CrossRef]
- Zhou, P.F.; Hong, R.; Ran, S.J. Automatically differentiable quantum circuit for many-qubit state preparation. Phys. Rev. A 2021, 104, 042601. [Google Scholar] [CrossRef]
- Rudolph, M.S.; Chen, J.; Miller, J.; Acharya, A.; Perdomo-Ortiz, A. Decomposition of Matrix Product States into Shallow Quantum Circuits. arXiv 2022, arXiv:2209.00595. [Google Scholar] [CrossRef]
№ | Operation | Result Rank | Complexity |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornev, E.; Dolgov, S.; Perelshtein, M.; Melnikov, A. TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method. Mathematics 2024, 12, 3277. https://doi.org/10.3390/math12203277
Kornev E, Dolgov S, Perelshtein M, Melnikov A. TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method. Mathematics. 2024; 12(20):3277. https://doi.org/10.3390/math12203277
Chicago/Turabian StyleKornev, Egor, Sergey Dolgov, Michael Perelshtein, and Artem Melnikov. 2024. "TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method" Mathematics 12, no. 20: 3277. https://doi.org/10.3390/math12203277
APA StyleKornev, E., Dolgov, S., Perelshtein, M., & Melnikov, A. (2024). TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method. Mathematics, 12(20), 3277. https://doi.org/10.3390/math12203277