Summary-Sentence Level Hierarchical Supervision for Re-Ranking Model of Two-Stage Abstractive Summarization Framework
Abstract
:1. Introduction
2. Related Work
2.1. Re-Ranking Model for Abstractive Summarization
2.2. Sentence-Level Supervision
2.3. Approaches to Reflecting Detailed Information in Text Summarization
3. Methodology
3.1. Problem Statement
3.2. Problem Formulation
3.3. Summary-Level Supervision
3.4. Sentence-Level Supervision
3.4.1. Intra-Sentence Ranking Loss
3.4.2. Inter-Intra-Sentence Ranking Loss
4. Experiments
4.1. Experimental Settings
4.1.1. Datasets
4.1.2. Implementation Details
4.2. Main Results
4.3. Few-Shot Results
5. Analysis
5.1. Sentence Ranking Performance
5.2. Positional Bias
6. Conclusions
7. Limitation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the NIPS’14, 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 2, pp. 3104–3112. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; (Long and Short Papers). Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Bengio, S.; Vinyals, O.; Jaitly, N.; Shazeer, N. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. In Proceedings of the NIPS’15, 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 1, pp. 1171–1179. [Google Scholar]
- Liu, Y.; Liu, P. SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Online, 1–6 August 2021; (Short Papers). Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; Volume 2, pp. 1065–1072. [Google Scholar] [CrossRef]
- Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Text Summarization Branches Out, Barcelona, Spain, 25–26 July 2004; pp. 74–81. [Google Scholar]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 7871–7880. [Google Scholar] [CrossRef]
- Hermann, K.M.; Kociský, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching Machines to Read and Comprehend. In Advances in Neural Information Processing Systems 28; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 1693–1701. [Google Scholar]
- Liu, Y.; Liu, P.; Radev, D.; Neubig, G. BRIO: Bringing Order to Abstractive Summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; (Long Papers). Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; Volume 1, pp. 2890–2903. [Google Scholar] [CrossRef]
- Narayan, S.; Cohen, S.B.; Lapata, M. Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1797–1807. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Ravaut, M.; Joty, S.; Chen, N. SummaReranker: A Multi-Task Mixture-of-Experts Re-ranking Framework for Abstractive Summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; (Long Papers). Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; Volume 1, pp. 4504–4524. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; Chi, E.H. Modeling Task Relationships in Multi-Task Learning with Multi-Gate Mixture-of-Experts. In Proceedings of the KDD’18, 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1930–1939. [Google Scholar] [CrossRef]
- Yuan, W.; Neubig, G.; Liu, P. BARTScore: Evaluating Generated Text as Text Generation. In Advances in Neural Information Processing Systems 34; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 27263–27277. [Google Scholar]
- Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. BERTScore: Evaluating Text Generation with BERT. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Zhang, J.; Zhao, Y.; Saleh, M.; Liu, P.J. PEGASUS: Pre-Training with Extracted Gap-Sentences for Abstractive Summarization. In Proceedings of the ICML’20, 37th International Conference on Machine Learning, Virtual, 13–18 July 2020. [Google Scholar]
- Wu, B.; Zhang, Z.; Wang, J.; Zhao, H. Sentence-aware Contrastive Learning for Open-Domain Passage Retrieval. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; (Long Papers). Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; Volume 1, pp. 1062–1074. [Google Scholar] [CrossRef]
- Xu, W.; Chen, K.; Mou, L.; Zhao, T. Document-Level Relation Extraction with Sentences Importance Estimation and Focusing. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, WA, USA, 10–15 July 2022; Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 2920–2929. [Google Scholar] [CrossRef]
- Wang, F.; Song, K.; Zhang, H.; Jin, L.; Cho, S.; Yao, W.; Wang, X.; Chen, M.; Yu, D. Salience Allocation as Guidance for Abstractive Summarization. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; pp. 6094–6106. [Google Scholar] [CrossRef]
- Song, K.; Wang, B.; Feng, Z.; Liu, R.; Liu, F. Controlling the Amount of Verbatim Copying in Abstractive Summarization. Proc. AAAI Conf. Artif. Intell. 2020, 34, 8902–8909. [Google Scholar] [CrossRef]
- Lynch, C.J.; Jensen, E.J.; Zamponi, V.; O’Brien, K.; Frydenlund, E.; Gore, R. A Structured Narrative Prompt for Prompting Narratives from Large Language Models: Sentiment Assessment of ChatGPT-Generated Narratives and Real Tweets. Future Internet 2023, 15, 375. [Google Scholar] [CrossRef]
- Vijayakumar, A.K.; Cogswell, M.; Selvaraju, R.R.; Sun, Q.; Lee, S.; Crandall, D.; Batra, D. Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models. arXiv 2018, arXiv:1610.02424. Available online: http://arxiv.org/abs/1610.02424 (accessed on 7 October 2016).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Liu, Y.; Lapata, M. Text Summarization with Pretrained Encoders. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3730–3740. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. arXiv 2022, arXiv:2203.02155. Available online: http://arxiv.org/abs/2203.02155 (accessed on 4 March 2022).
Dataset | # Data Points | # Words | # Sentences | ||||
---|---|---|---|---|---|---|---|
Train | Val | Test | Doc. | Summ. | Doc. | Summ. | |
CNN/DM | 287,113 | 13,368 | 11,490 | 766.56 | 54.78 | 33.98 | 3.59 |
XSum | 204,045 | 11,332 | 11,334 | 414.51 | 22.96 | 19.77 | 1.00 |
Model | R-1 | R-2 | R-L |
---|---|---|---|
BERTSumExtAbs | 42.13 | 19.6 | 39.18 |
BART | 44.16 | 21.28 | 40.90 |
PEGASUS | 44.17 | 21.47 | 41.11 |
SEASON | 46.27 | 22.64 | 43.08 |
SimCLS | 46.67 | 22.15 | 43.54 |
SummaReranker | 47.16 | 22.61 | 43.87 |
BRIO-Ctr | 47.28 | 22.93 | 44.15 |
proposed-intra | 47.35 * | 23.17 * | 44.29 * |
proposed-inter + intra | 47.31 * | 23.13 * | 44.22 * |
Model | R-1 | R-2 | R-L |
---|---|---|---|
BERTSumExtAbs | 38.81 | 16.50 | 31.27 |
BART | 45.14 | 22.27 | 37.25 |
PEGASUS | 47.21 | 24.56 | 39.25 |
SimCLS | 47.61 | 24.57 | 39.44 |
SummaReranker | 48.12 | 24.95 | 40.00 |
BRIO-Ctr | 48.13 | 25.13 | 39.84 |
proposed-intra | 48.25 * | 25.22 * | 39.99 |
proposed-inter + intra | 48.19 * | 25.13 | 39.87 |
Model | 100-Shot | 1000-Shot | ||||
---|---|---|---|---|---|---|
R-1 | R-2 | R-L | R-1 | R-2 | R-L | |
CNN/DM | ||||||
BART | 44.16 | 21.28 | 40.90 | 44.16 | 21.28 | 40.90 |
PEGASUS | 44.17 | 21.47 | 41.11 | 44.17 | 21.47 | 41.11 |
BRIO-Ctr | 45.07 | 21.43 | 42.03 | 46.03 | 22.12 | 42.98 |
proposed-intra | 45.51 | 21.78 | 42.45 | 46.30 | 22.38 | 43.22 |
proposed-inter + intra | 45.56 | 21.80 | 42.51 | 46.26 | 22.32 | 43.20 |
XSum | ||||||
BART | 45.14 | 22.27 | 37.25 | 45.14 | 22.27 | 37.25 |
PEGASUS | 47.21 | 24.56 | 39.25 | 47.21 | 24.56 | 39.25 |
BRIO-Ctr | 47.22 | 24.71 | 39.34 | 47.34 | 24.70 | 39.39 |
proposed-intra | 47.26 | 24.74 | 39.36 | 47.40 | 24.73 | 39.40 |
proposed-inter + intra | 47.26 | 24.78 | 39.41 | 47.41 | 24.79 | 39.47 |
Model | best Sentence Accuracy (%) | Worst Sentence Accuracy (%) |
---|---|---|
BRIO-Ctr | 43.97 | 43.00 |
proposed-intra | 49.81 | 50.05 |
proposed-inter + intra | 50.91 | 50.66 |
Sentence Ranking Loss | R-1 | R-2 | R-L | |||||
---|---|---|---|---|---|---|---|---|
intra | 2 | 0.001 | 1 | 0.02 | 0.007 | 47.16 | 22.97 | 44.08 |
0.03 | 47.16 | 22.96 | 44.08 | |||||
0.4 | 0.007 | 47.35 | 23.17 | 44.29 | ||||
0.03 | 47.28 | 23.05 | 44.20 | |||||
2 | 0.02 | 0.007 | 47.20 | 23.03 | 44.16 | |||
0.03 | 47.28 | 23.08 | 44.22 | |||||
0.4 | 0.007 | 47.23 | 22.96 | 44.12 | ||||
0.03 | 47.11 | 22.94 | 44.07 | |||||
inter + intra | 2 | 0.001 | 1 | 0.02 | 0.007 | 47.18 | 22.98 | 44.10 |
0.03 | 47.14 | 22.90 | 44.05 | |||||
0.4 | 0.007 | 47.31 | 23.13 | 44.22 | ||||
0.03 | 47.22 | 22.97 | 44.13 | |||||
2 | 0.02 | 0.007 | 47.18 | 23.05 | 44.13 | |||
0.03 | 47.32 | 23.11 | 44.28 | |||||
0.4 | 0.007 | 47.31 | 23.11 | 44.22 | ||||
0.03 | 47.03 | 22.85 | 43.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, E.; Kim, G.; Kang, S. Summary-Sentence Level Hierarchical Supervision for Re-Ranking Model of Two-Stage Abstractive Summarization Framework. Mathematics 2024, 12, 521. https://doi.org/10.3390/math12040521
Yoo E, Kim G, Kang S. Summary-Sentence Level Hierarchical Supervision for Re-Ranking Model of Two-Stage Abstractive Summarization Framework. Mathematics. 2024; 12(4):521. https://doi.org/10.3390/math12040521
Chicago/Turabian StyleYoo, Eunseok, Gyunyeop Kim, and Sangwoo Kang. 2024. "Summary-Sentence Level Hierarchical Supervision for Re-Ranking Model of Two-Stage Abstractive Summarization Framework" Mathematics 12, no. 4: 521. https://doi.org/10.3390/math12040521
APA StyleYoo, E., Kim, G., & Kang, S. (2024). Summary-Sentence Level Hierarchical Supervision for Re-Ranking Model of Two-Stage Abstractive Summarization Framework. Mathematics, 12(4), 521. https://doi.org/10.3390/math12040521