Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain
Abstract
:1. Introduction
2. Initial Coefficient Bounds and Fekete–Szegö Problem for
3. Coefficient Inequalities for
4. Initial Logarithmic Coefficient Bounds and Fekete–Szegö Problem for
5. Characterization Properties
6. Subordination Results
7. Partial Sums
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Dziok, J. A general solution of the Fekete-Szegö problem. Bound. Value Probl. 2013, 98, 13. [Google Scholar] [CrossRef]
- Kanas, S. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453–8461. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differentials; John Wiley and Sons, New York Press: New York, NY, USA, 1993. [Google Scholar]
- Wiman, A. Über die Nullstellen der Funktionen Ea(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Ece, S. Geometric Properties of the Miller-Ross Functions. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 631–636. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Annal. Oradea Univ. Math. Fascicola 2017, 24, 5–8. [Google Scholar]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Bionomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Wanas, A.K.; Al-Ziadi, N.A. Applications of beta negative binomial distribution series on holomorphic funxtions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Mashwani, W.K.; Salleh, Z.; Tang, H. Applications of a new q-difference operator in Janowski-type meromorphic convex functions. J. Funct. 2021, 2021, 5534357. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains. Integr. Transf. Spec. Func. 2007, 18, 511–520. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Bull. Acad. Plolon. Sci. Ser. Sci. Math. Astronomy 1973, 21, 17–25. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Khan, N.; Mashwani, W.K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag–Leffler type poisson distribution to a subclass of analytic functions involving conic-type regions. J. Funct. Spaces 2021, 2021, 4343163. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag–Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorty, G.; Alburaikan, A. A bi-Bazilevič functions based on the Mittag–Leffler-Type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag–Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Sümer Eker, S.; Murugusundaramoorthy, G.; Şeker, B.; Çekiç, B. Spiral-like functions associated with Miller–Ross-type Poisson distribution series. Boletin Soc. Matematica Mex. 2023, 29, 16. [Google Scholar] [CrossRef]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Alimohammadi, D.; Adegani, E.A.; Bulboaca, T.; Cho, N.E. Logarithmic coefficients for classes related to convex functions. Bull. Malays. Math. Sci. Soc. 2021, 44, 2659–2673. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Adegani, E.A.; Bulboaca, T.; Cho, N.E. Logarithmic coefficients bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Wilf, H.S. Subordinating factor sequence for convex maps of the unit circle. Proc. Am. Math. Soc. 1961, 12, 689–693. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Rosy, T.; Subramanian, K.G.; Murugusundaramoorthy, G. Neighbourhoods and Partial sums of Starlike Functions Based on Ruscheweyh Derivatives. J. Ineq. Pure Appl. Math. 2003, 64, 4. [Google Scholar]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problemsfor starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass ofstrongly starlike functions associated with exponential functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functionsassociated with cardioid. Afrika Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functionsassociated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Sokól, J. Radius problem in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On Coefficient estimates for acertain class of starlike functions. Hacettepe. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Gandhi, S. Radius estimates for three leaf functions and convexcombination of starlike functions. In Mathematical Analysis 1: Approximation Theory; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; Springer: Singapore, 2018; Volume 306. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Güney, H.Ö.; Breaz, D. Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain. Mathematics 2024, 12, 795. https://doi.org/10.3390/math12060795
Murugusundaramoorthy G, Güney HÖ, Breaz D. Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain. Mathematics. 2024; 12(6):795. https://doi.org/10.3390/math12060795
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, Hatun Özlem Güney, and Daniel Breaz. 2024. "Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain" Mathematics 12, no. 6: 795. https://doi.org/10.3390/math12060795
APA StyleMurugusundaramoorthy, G., Güney, H. Ö., & Breaz, D. (2024). Starlike Functions of the Miller–Ross-Type Poisson Distribution in the Janowski Domain. Mathematics, 12(6), 795. https://doi.org/10.3390/math12060795