The Influence of Platen Stiffness on a Specimen’s Failure Initiation Point and the Failure Pattern of Brittle Materials in the Standardized Uniaxial Compression Test
Abstract
:1. Introduction
2. Numerical Model
3. Platen Stiffness Influence on Stress Field inside the Specimen
3.1. Stress Field Comparison
3.2. Identification of Relevant Points on the
3.3. Maximum Shearing Depending on the Material of the Platen
4. Platen Stiffness Influence on Failure Criterion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hondros, G. The Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete. Aust. J. Appl. Sci. 1959, 10, 243–268. [Google Scholar]
- Hung, K.M.; Ma, C.C. Theoretical Analysis and Digital Photoelastic Measurement of Circular Disks Subjected to Partially Distributed Compressions. Exp. Mech. 2003, 43, 216–224. [Google Scholar] [CrossRef]
- Ma, C.C.; Hung, K.M. Exact Full-Field Analysis of Strain and Displacement for Circular Disks Subjected to Partially Distributed Compressions. Int. J. Mech. Sci. 2008, 50, 275–292. [Google Scholar] [CrossRef]
- Kourkoulis, S.K.; Markides, C.F.; Chatzistergos, P.E. The Standardized Brazilian Disc Test as a Contact Problem. Int. J. Rock Mech. Min. Sci. 2013, 57, 132–141. [Google Scholar] [CrossRef]
- Markides, C.F.; Pazis, D.N.; Kourkoulis, S.K. Influence of Friction on the Stress Field of the Brazilian Tensile Test. Rock Mech. Rock Eng. 2011, 44, 113–119. [Google Scholar] [CrossRef]
- Markides, C.F.; Pazis, D.N.; Kourkoulis, S.K. The Brazilian Disc under Non-Uniform Distribution of Radial Pressure and Friction. Int. J. Rock Mech. Min. Sci. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Guerrero-Miguel, D.J.; Álvarez-Fernández, M.I.; García-Fernández, C.C.; González-Nicieza, C.; Menéndez-Fernández, C. Analytical and Numerical Stress Field Solutions in the Brazilian Test Subjected to Radial Load Distributions and Their Stress Effects at the Centre of the Disk. J. Eng. Math. 2019, 116, 29–48. [Google Scholar] [CrossRef]
- Carneiro, F.L.L.B. A New Method to Determine the Tensile Strength of Concrete. In Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, Sao Paulo, Brazil, 16 September 1943; pp. 126–129. [Google Scholar]
- Fairbairn, E.M.R. A Tribute to Fernando L. L. B. Carneiro (1913–2001) Engineer and Scientist Who Invented the Brazilian Test. Mater. Struct. 2002, 35, 195–196. [Google Scholar] [CrossRef]
- Guerrero-Miguel, D.J.; Alvarez-Fernández, M.I.; Prendes-Gero, M.B.; González-Nicieza, C. Determination of Uniaxial Tensile Strength of Brittle Materials Using Tubular Samples. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 833. [Google Scholar]
- Markides, C.F.; Kourkoulis, S.K. Towards Alternative Configurations to Determine the Tensile Strength of Brittle Materials. In Proceedings of the 36th Danubia Adria Symposium on Advances in Experimental Mechanics, Plzeň, Czech Republic, 24–27 September 2019; pp. 99–100. [Google Scholar]
- Garcia-Fernandez, C.C.; Gonzalez-Nicieza, C.; Alvarez-Fernandez, M.I.; Gutierrez-Moizant, R.A. Analytical and Experimental Study of Failure Onset during a Brazilian Test. Int. J. Rock Mech. Min. Sci. 2018, 103, 254–265. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Serati, M.; Masoumi, H.; Rahimi, E. Numerical Assessment of Rupture Mechanisms in Brazilian Test of Brittle Materials. Int. J. Solids Struct. 2019, 180–181, 1–12. [Google Scholar] [CrossRef]
- ASTM D7012-23; Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D695-15; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM E9-19; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C39/39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- UNE-EN 12390-3:2020; Ensayos de Hormigón Endurecido. Parte 3: Determinación de La Resistencia a Compresión de Probetas. Spanish Association for Standardization, UNE: Madrid, Spain, 2020.
- UNE 22950-1:1990; Propiedades Mecánicas de Las Rocas. Ensayos Para La Determinación de La Resistencia. Parte 1: Resistencia a La Compresión Uniaxial. Spanish Association for Standardization, UNE: Madrid, Spain, 1990.
- Bieniawski, Z.T.; Bernede, M.J. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 137–140. [Google Scholar] [CrossRef]
- Broch, E.; Franklin, J.A. The Point-Load Strength Test. Int. J. Rock Mech. Min. Sci. 1972, 9, 669–697. [Google Scholar] [CrossRef]
- Franklin, J.A. Suggested Method for Determining Point Load Strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 51–60. [Google Scholar] [CrossRef]
- Wei, X.X.; Chau, K.T. Analytic Solution for Finite Transversely Isotropic Circular Cylinders under the Axial Point Load Test. J. Eng. Mech. 2002, 128, 209–219. [Google Scholar] [CrossRef]
- ASTM D5731-16; Standard Test Method for Determination of the Point Load Strength Index of Rock Application to Rock Strength Classifications. ASTM International: West Conshohocken, PA, USA, 2016.
- Wang, M.; Wan, W. A New Empirical Formula for Evaluating Uniaxial Compressive Strength Using the Schmidt Hammer Test. Int. J. Rock Mech. Min. Sci. 2019, 123, 104094. [Google Scholar] [CrossRef]
- Moomivand, H. Development of a New Method for Estimating the Indirect Uniaxial Compressive Strength of Rock Using Schmidt Hammer. Berg Huettenmaenn. Monatsh. 2011, 156, 142–146. [Google Scholar] [CrossRef]
- Filon, L.N.G. On the Elastic Equilibrium of Circular Cylinders under Certain Practical Systems of Load. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1902, 198, 147–233. [Google Scholar] [CrossRef]
- Brady, B.T. An Exact Solution to the Radially End-Constrained. Int. J. Rock Mech. Min. Sci. 1971, 8, 165–178. [Google Scholar] [CrossRef]
- Al-Chalabi, M.; Huang, C.L. Stress Distribution within Circular Cylinders in Compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 11, 45–56. [Google Scholar] [CrossRef]
- Jin, C.; Liu, S.; Xu, P.; Guo, C. Scale Effect Stress–Strain Model of Coal Containing Gas. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 147. [Google Scholar] [CrossRef]
- Kotsovos, M.D. Effect of Testing Techniques on the Post-Ultimate Behaviour of Concrete in Compression. Mater. Constr. 1983, 16, 3–12. [Google Scholar] [CrossRef]
- Stredulová, M.; Lisztwan, D.; Eliáš, J. Friction Effects in Uniaxial Compression of Concrete Cylinders. Procedia Struct. Integr. 2022, 42, 1537–1544. [Google Scholar] [CrossRef]
- Bandeira, M.V.V.; La Torre, K.R.; Kosteski, L.E.; Marangon, E.; Riera, J.D. Influence of Contact Friction in Compression Tests of Concrete Samples. Constr. Build. Mater. 2022, 317, 125811. [Google Scholar] [CrossRef]
- Hudson, J.A.; Brown, E.T.; Farihurst, C. Shape of the Complete Stress-Strain Curve. In Proceedings of the Thirteenth US Symposium on Rock Mechanics, Stability of Rock Slopes, Urbana, IL, USA, 30 August–1 September 1971; ASCE: Reston, VA, USA, 1971; pp. 773–795. [Google Scholar]
- Van Mier, J.G.M. Fracture Process of Concrete; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- González-Fernández, M.A.; Estévez-Ventosa, X.; Alonso, E.; Alejano, L.R. Analysis of Size Effects on the Hoek-Brown Failure Criterion of Intact Granite Samples. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Turin, Italy, 20–25 September 2021; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 833. [Google Scholar]
- Alejano, L.R.; Estévez-Ventosa, X.; González-Fernández, M.A.; Walton, G.; West, I.G.; González-Molano, N.A.; Alvarellos, J. A Method to Correct Indirect Strain Measurements in Laboratory Uniaxial and Triaxial Compressive Strength Tests. Rock Mech. Rock Eng. 2021, 54, 2643–2670. [Google Scholar] [CrossRef]
- Alejano, L.R.; Arzúa, J.; Estévez-Ventosa, X.; Suikkanen, J. Correcting Indirect Strain Measurements in Laboratory Uniaxial Compressive Testing at Various Scales. Bull. Eng. Geol. Environ. 2020, 79, 4975–4977. [Google Scholar] [CrossRef]
- Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. Fundamentals of Rock Mechanics, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2007; ISBN 978-0-632-05759-7. [Google Scholar]
- De Vallejo, L.I.G.; Ferrer, M.; Ortuño, L.; Oteo, C. Ingeniería Geológica; Prentice Hall: Saddle River, NJ, USA, 2002; ISBN 8420531049. [Google Scholar]
- Feng, X.T.; Kong, R.; Zhang, X.; Yang, C. Experimental Study of Failure Differences in Hard Rock Under True Triaxial Compression. Rock Mech. Rock Eng. 2019, 52, 2109–2122. [Google Scholar] [CrossRef]
- Mogi, K. Effect of the Triaxial Stress System on the Failure of Dolomite and Limestone. Tectonophysics 1971, 11, 111–127. [Google Scholar] [CrossRef]
- Goodman, R.E. Introduction to Rock Mechanics, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1981; Volume 18, ISBN 0471812005. [Google Scholar]
- Nikolić, M.; Roje-Bonacci, T.; Ibrahimbegović, A. Overview of the Numerical Methods for the Modelling of Rock Mechanics. Teh. Vjesn. 2016, 23, 627–637. [Google Scholar] [CrossRef]
- Perrone, N.; Kao, R. A General Finite Difference Method for Arbitrary Meshes. Comput. Struct. 1975, 5, 45–58. [Google Scholar] [CrossRef]
- Brighi, B.; Chipot, M.; Gut, E. Finite Differences on Triangular Grids. Numer. Methods Partial. Differ. Equ. 1998, 14, 567–579. [Google Scholar] [CrossRef]
- Budynas, R.G.; Nisbett, J.K.; Shigley, J.E. Shigley’s Mechanical Engineering Design; McGraw-Hill: New York, NY, USA, 2011; ISBN 0073529281. [Google Scholar]
- Rabat, Á.; Tomás, R.; Cano, M. Assessing Water-Induced Changes in Tensile Behaviour of Porous Limestones by Means of Uniaxial Direct Pull Test and Indirect Methods. Eng. Geol. 2023, 313, 106962. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, M.I.; Garcia-Fernandez, C.C.; Gonzalez-Nicieza, C.; Guerrero-Miguel, D.J. Effect of the Contact Angle in the Failure Pattern in Slate Under Diametral Compression. Rock Mech. Rock Eng. 2020, 53, 2123–2139. [Google Scholar] [CrossRef]
Stiffer Platen M1 | Equal Stiffness Platen M2 | Less Stiff Platen M3 | |
---|---|---|---|
Young’s Modulus (GPa) | 210 | 70 | 3.20 |
Poisson’s ratio | 0.30 | 0.33 | 0.40 |
3 | 1 | 0.05 |
Limestone Lithotype L1 | Limestone Lithotype L2 | Limestone Lithotype L3 | |
---|---|---|---|
Uniaxial compressive strength UCS (MPa) | 83.0 | 42.7 | 52.4 |
Internal friction angle (°) | 37.4 | 35.3 | 27.3 |
Indirect tensile strength | 5.5 | 2.8 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Miguel, D.-J.; Álvarez-Fernández, M.-I.; Gutiérrez-Moizant, R.; Prendes-Gero, M.-B.; González-Nicieza, C. The Influence of Platen Stiffness on a Specimen’s Failure Initiation Point and the Failure Pattern of Brittle Materials in the Standardized Uniaxial Compression Test. Mathematics 2024, 12, 907. https://doi.org/10.3390/math12060907
Guerrero-Miguel D-J, Álvarez-Fernández M-I, Gutiérrez-Moizant R, Prendes-Gero M-B, González-Nicieza C. The Influence of Platen Stiffness on a Specimen’s Failure Initiation Point and the Failure Pattern of Brittle Materials in the Standardized Uniaxial Compression Test. Mathematics. 2024; 12(6):907. https://doi.org/10.3390/math12060907
Chicago/Turabian StyleGuerrero-Miguel, Diego-José, Martina-Inmaculada Álvarez-Fernández, Ramón Gutiérrez-Moizant, María-Belén Prendes-Gero, and Celestino González-Nicieza. 2024. "The Influence of Platen Stiffness on a Specimen’s Failure Initiation Point and the Failure Pattern of Brittle Materials in the Standardized Uniaxial Compression Test" Mathematics 12, no. 6: 907. https://doi.org/10.3390/math12060907
APA StyleGuerrero-Miguel, D. -J., Álvarez-Fernández, M. -I., Gutiérrez-Moizant, R., Prendes-Gero, M. -B., & González-Nicieza, C. (2024). The Influence of Platen Stiffness on a Specimen’s Failure Initiation Point and the Failure Pattern of Brittle Materials in the Standardized Uniaxial Compression Test. Mathematics, 12(6), 907. https://doi.org/10.3390/math12060907