A Generalized Hierarchy of Combined Integrable Bi-Hamiltonian Equations from a Specific Fourth-Order Matrix Spectral Problem
Abstract
:1. Introduction
2. A Matrix Spectral Problem and Its Four-Component Integrable Hierarchy
3. Recursion Operator and Bi-Hamiltonian Formulation
4. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Das, A. Integrable Models; World Scientific: Teaneck, NJ, USA, 1989. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings and matrix loop algebras. In Nonlinear and Modern Mathematical Physics; Ma, W.X., Kaup, D., Eds.; AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2013; Volume 1562, pp. 105–122. [Google Scholar]
- Drinfel’d, V.; Sokolov, V.V. Lie algebras and equations of Korteweg–de Vries type. Sov. J. Math. 1985, 30, 1975–2036. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. Ann. Math. Ser. A 1992, 13, 115–123. [Google Scholar]
- Liu, C.S. How many first integrals imply integrability in infinite-dimensional Hamilton system. Rep. Mat. Phys. 2011, 67, 109–123. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Coupled KdV equations with multi-Hamiltonian structures. Phys. D 1987, 28, 345–357. [Google Scholar] [CrossRef]
- Xia, T.C.; Yu, F.J.; Zhang, Y. The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions. Physica A 2004, 343, 238–246. [Google Scholar] [CrossRef]
- Manukure, S. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 125–135. [Google Scholar] [CrossRef]
- Liu, T.S.; Xia, T.C. Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem. Nonlinear Anal. Real World Appl. 2022, 68, 103667. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations. J. Comput. Appl. Math. 2023, 420, 114812. [Google Scholar] [CrossRef]
- Gerdjikov, V.S. Nonlinear evolution equations related to Kac-Moody algebras : Spectral aspects. Turkish J. Math. 2022, 46, 1828–1844. [Google Scholar] [CrossRef]
- Ma, W.X. AKNS type reduced integrable hierarchies with Hamiltonian formulations. Rom. J. Phys. 2023, 68, 116. [Google Scholar] [CrossRef]
- Takhtajan, L.A. Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. A 1977, 64, 235–237. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Wadati, M.; Konno, K.; Ichikawa, Y.H. New integrable nonlinear evolution equations. J. Phys. Soc. Jpn. 1979, 47, 1698–1700. [Google Scholar] [CrossRef]
- Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. Rom. Rep. Phys. 2023, 75, 115. [Google Scholar]
- Ma, W.X. Four-component combined integrable equations possessing bi-Hamiltonian formulations. Mod. Phys. Lett. B 2024, 38. to appear. [Google Scholar]
- Ma, W.X. Four-component integrable hierarchies and their Hamiltonian structures. Commun. Nonlinear Sci. Numer. Simul. 2023, 126, 107460. [Google Scholar] [CrossRef]
- Zhang, Y.F. A few expanding integrable models, Hamiltonian structures and constrained flows. Commun. Theor. Phys. 2011, 55, 273–290. [Google Scholar] [CrossRef]
- Zhaqilao. A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2319–2332. [Google Scholar] [CrossRef]
- Ma, W.X. Reduced AKNS spectral problems and associated complex matrix integrable models. Acta Appl. Math. 2023, 187, 17. [Google Scholar] [CrossRef]
- Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with (m + n + 2)th-order Lax pairs. Theoret. Math. Phys. 2023, 216, 1180–1188. [Google Scholar] [CrossRef]
- Ma, W.X. A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations. Appl. Math. Lett. 2024, 153, 109025. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Fuchssteiner, B.; Fokas, A.S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Ma, W.X. The commutative property of reciprocal transformations and dimensional deformations. Qual. Theory Dyn. Syst. 2024, 23, 2. [Google Scholar] [CrossRef]
- Ma, W.X. The algebraic structure of zero curvature representations and application to coupled KdV systems. J. Phys. A Math. Gen. 1993, 26, 2573–2582. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Anal. Theory Methods Appl. 1979, 3, 849–862. [Google Scholar] [CrossRef]
- Olver, P.J. Evolution equations possessing infinitely many symmetries. J. Math. Phys. 1977, 18, 1212–1215. [Google Scholar] [CrossRef]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultantn Bureau: New York, NY, USA, 1984. [Google Scholar]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin, Germany, 1991. [Google Scholar]
- Xia, B.Q.; Zhou, R.G.; Qiao, Z.J. Darboux transformation and multi-soliton solutions of the Camassa-Holm equation and modified Camassa-Holm equation. J. Math. Phys. 2016, 57, 103502. [Google Scholar] [CrossRef]
- Geng, X.G.; Li, R.M.; Xue, B. A vector general nonlinear Schrödinger equation with (m + n) components. J. Nonlinear Sci. 2020, 30, 991–1013. [Google Scholar] [CrossRef]
- Ye, R.S.; Zhang, Y. A vectorial Darboux transformation for the Fokas–Lenells system. Chaos Solitons Fractals 2023, 169, 113233. [Google Scholar] [CrossRef]
- Ma, W.X. Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos Solitons Fractals 2024, 180, 114539. [Google Scholar] [CrossRef]
- Belokolon, E.D.; Bobenko, A.I.; Enol’skii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: Berlin, Germany, 1994. [Google Scholar]
- Geng, X.G. Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A Math. Gen. 2003, 36, 2289–2303. [Google Scholar] [CrossRef]
- Geng, X.G.; Liu, W.; Xue, B. Finite genus solutions to the coupled Burgers hierarchy. Results Math. 2019, 74, 11. [Google Scholar] [CrossRef]
- Gao, H.; Wang, D.S. Optical undular bores in Riemann problem of photon fluid with quintic nonlinearity. Phys. Rev. E 2023, 108, 024222. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, D.S.; Zhao, P. Algebro-geometric solutions of the modified Jaulent-Miodek hierarchy. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2350239. [Google Scholar] [CrossRef]
- Cao, C.W.; Geng, X.G. Classical integrable systems generated through nonlineariztion of eigenvalue problems. In Nonlinear Physics; Gu, C.H., Li, Y.S., Tu, G.Z., Eds.; Research Reports in Physics; Springer: Berlin/Heidelberg, Germany, 1990; pp. 68–78. [Google Scholar]
- Ma, W.X.; Strampp, W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A 1994, 185, 277–286. [Google Scholar] [CrossRef]
- Xu, X.X. A generalized Wadati-Konno-Ichikawa hierarchy and its binary nonlinearization by symmetry constraints. Chaos Solitons Fractals 2003, 15, 475–486. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Li, Y.X. The binary nonlinearization of generalized Toda hierarchy by a special choice of parameters. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3257–3268. [Google Scholar] [CrossRef]
- Dong, H.H.; Su, J.; Yi, F.J.; Zhang, T.Q. New Lax pairs of the Toda lattice and the nonlinearization under a higher-order Bargmann constraint. J. Math. Phys. 2012, 53, 033708. [Google Scholar] [CrossRef]
- Yu, J.; He, J.S.; Cheng, Y. Binary nonlinearization of the nonlinear Schrödinger equation under an implicit symmetry constraint. Acta Math. Appl. Sin. Engl. Ser. 2014, 30, 379–388. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, Q.L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys. 2017, 121, 123–137. [Google Scholar] [CrossRef]
- Hu, B.B.; Xia, T.C. The binary nonlinearization of the super integrable system and its self-consistent sources. Int. J. Nonlinear Sci. Numer. Simul. 2017, 18, 285–292. [Google Scholar] [CrossRef]
- Aktosun, T.; Busse, T.; Demontis, F.; van der Mee, C. Symmetries for exact solutions to the nonlinear Schrödinger equation. J. Phys. A Math. Theor. 2010, 43, 025202. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.H.; Zhang, X.E.; Yang, H.W. Rational solutions and lump solutions to the generalized (3 + 1)-dimensional shallow water-like equation. Comput. Math. Appl. 2017, 73, 246–252. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Lin, M.J. Lax pair and lump solutions for the (2 + 1)-dimensional DJKM equation associated with bilinear Bäcklund transformations. Anal. Math. Phys. 2019, 9, 1741–1752. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Abdeljabbar, A.; Alquran, M. Dynamics of lump collision phenomena to the (3 + 1)-dimensional nonlinear evolution equation. J. Geom. Phys. 2021, 169, 104347. [Google Scholar] [CrossRef]
- Yusuf, A.; Sulaiman, T.A.; Abdeljabbar, A.; Alquran, M. Breathem waves, analytical solutions and conservation lawn using Lie–Bäcklund symmetries to the (2 + 1)-dimensional Chaffee–Infante equation. J. Ocean Eng. Sci. 2023, 8, 145–151. [Google Scholar] [CrossRef]
- Manukure, S.; Chowdhury, A.; Zhou, Y. Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation. Int. J. Mod. Phys. B 2019, 33, 1950098. [Google Scholar] [CrossRef]
- Zhou, Y.; Manukure, S.; McAnally, M. Lump and rogue wave solutions to a (2 + 1)-dimensional Boussinesq type equation. J. Geom. Phys. 2021, 167, 104275. [Google Scholar] [CrossRef]
- Ma, W.X. Lump waves in a spatial symmetric nonlinear dispersive wave model in (2 + 1)-dimensions. Mathematics 2023, 11, 4664. [Google Scholar] [CrossRef]
- Manukure, S.; Zhou, Y. A study of lump and line rogue wave solutions to a (2 + 1)-dimensional nonlinear equation. J. Geom. Phys. 2021, 167, 104274. [Google Scholar] [CrossRef]
- Yang, S.X.; Wang, Y.F.; Zhang, X. Conservation laws, Darboux transformation and localized waves for the N-coupled nonautonomous Gross-Pitaevskii equations in the Bose–Einstein condensates. Chaos Solitons Fractals 2023, 169, 113272. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Ren, B. Resonance soliton, breather and interaction solutions of the modified Kadomtsev-Petviashvili-II equation. J. Nonlinear Math. Phys. 2023, 30, 1272–1281. [Google Scholar] [CrossRef]
- She, Y.L.; Yao, R.X. Novel particular solutions, breathers, and rogue waves for an integrable nonlocal derivative nonlinear Schrödinger equation. Adv. Math. Phys. 2022, 2022, 7670773. [Google Scholar]
- Li, Y.; Tian, S.F. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Commun. Pure Appl. Anal. 2022, 21, 293–313. [Google Scholar] [CrossRef]
- Wu, J.P. A novel Riemann-Hilbert approach via t-part spectral analysis for a physically significant nonlocal integrable nonlinear Schrödinger equation. Nonlinearity 2023, 36, 2021–2037. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable non-local nonlinear Schrödinger hierarchies of type (−λ*,λ) and soliton solutions. Rep. Math. Phys. 2023, 92, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. A Generalized Hierarchy of Combined Integrable Bi-Hamiltonian Equations from a Specific Fourth-Order Matrix Spectral Problem. Mathematics 2024, 12, 927. https://doi.org/10.3390/math12060927
Ma W-X. A Generalized Hierarchy of Combined Integrable Bi-Hamiltonian Equations from a Specific Fourth-Order Matrix Spectral Problem. Mathematics. 2024; 12(6):927. https://doi.org/10.3390/math12060927
Chicago/Turabian StyleMa, Wen-Xiu. 2024. "A Generalized Hierarchy of Combined Integrable Bi-Hamiltonian Equations from a Specific Fourth-Order Matrix Spectral Problem" Mathematics 12, no. 6: 927. https://doi.org/10.3390/math12060927
APA StyleMa, W. -X. (2024). A Generalized Hierarchy of Combined Integrable Bi-Hamiltonian Equations from a Specific Fourth-Order Matrix Spectral Problem. Mathematics, 12(6), 927. https://doi.org/10.3390/math12060927