The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations
Abstract
:1. Introduction
2. Preliminaries
- 1.
- is upper semicontinuous;
- 2.
- outside some interval [0, 1];
- 3.
- is a monotonically increasing function on ;
- 4.
- is a monotonically decreasing function on ;
- 5.
- .
- (a)
- ;
- (b)
- ;
- (c)
- ,
- (d)
- with ;
- (e)
- .
3. Materials and Methods
3.1. Modification of Elementary Row Operations
- (a)
- Multiplying a row by a non-zero constant;
- (b)
- Exchanging two rows;
- (c)
- Adding/subtracting multiples of one row with another row.
- (a*)
- Multiplying a row by a non-zero trapezoidal fuzzy number;
- (b*)
- Adding/subtracting the result of multiplying a row with a trapezoidal fuzzy number to another row.
3.2. Algorithm for the Generalized Inverse of a Matrix
- 1.
- =
- 2.
- =.
- Step 1
- If the fuzzy matrix is not in parametric form, it must first be changed into a matrix whose elements are in parametric form.
- Step 2
- Any non-singular minor matrix of matrix of order r is identified where , denoted by .
- Step 3
- The inverse matrix is determined and is transposed to obtain . Next, is added to [0, 0] elements for elements outside the minor fuzzy matrix, so that the size is similar to that of matrix matrix is obtained.
- Step 4
- The matrix is transposed and let . This is the general inverse of the matrix .
4. Results and Discussion
4.1. Modification Concepts
- i.
- If and then ;
- ii.
- If and then ;
- iii.
- If and then ;
- iv.
- If and then .
4.2. The Inverse and Division of Trapezoidal Fuzzy Numbers
- a.
- ;
- b.
- ;
- c.
- ;
- d.
- ;
- e.
- ;
- f.
- If and , then ;
- g.
- If , then or ;
- h.
- If and , then ;
- i.
- If , then and ;
- j.
- If and , then .
4.3. Example of the Calculation of the Inverse and General Inverse of a Fuzzy Trapezoidal Matrix
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasseri, S.; Gholami, M. Linear System of Equations with Trapezoidal Fuzzy Numbers. J. Math. Comput. Sci. 2011, 3, 71–79. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S. Fuzzy symmetric solutions of fuzzy linear systems. J. Comput. Appl. Math. 2011, 235, 4545–4553. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Khezerloo, M. Maximal- and minimal symmetric solutions of fully fuzzy linear systems. J. Comput. Appl. Math. 2011, 235, 4652–4662. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Mikaeilvand, N.; Hoseinzadeh Lotfi, F.; Fallah Jelodar, M. Fully Fuzzy Linear Systems. Int. J. Appl. Oper. Res. 2011, 1, 35–48. [Google Scholar]
- Allahviranloo, T.; Mikaeilv, N.; Kiani, N.A.; Shabestari, R.M. Signed Decomposition of Fully Fuzzy Linear Systems. Appl. Appl. Math. 2008, 3, 77–88. [Google Scholar]
- Allahviranloo, T.; Ghanbari, M. On the algebraic solution of fuzzy linear systems based on interval theory. Appl. Math. Model. 2012, 36, 5360–5379. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Mikaeilvand, N. Fully fuzzy linear systems solving using MOLP. World Appl. Sci. J. 2011, 12, 2268–2273. [Google Scholar]
- Dehghan, M.; Hashemi, B. Solution of the fully fuzzy linear systems using the decomposition procedure. Appl. Math. Comput. 2006, 182, 1568–1580. [Google Scholar] [CrossRef]
- Behera, D.; Chakraverty, S. New approach to solve fully fuzzy system of linear equations using single and double parametric form of fuzzy numbers. Sadhana 2015, 40, 35–49. [Google Scholar] [CrossRef]
- Das, S.; Chakraverty, S. Numerical solution of interval and fuzzy system of linear equations. Appl. Appl. Math. 2012, 7, 334–356. [Google Scholar]
- Nayak, S.; Chakraverty, S. A New Approach to Solve Fuzzy System of Linear Equations. J. Math. Comput. Sci. 2013, 7, 205–212. [Google Scholar] [CrossRef]
- Behera, D.; Chakraverty, S. Solution of Fuzzy System of Linear Equations with Polynomial Parametric Form. Appl. Appl. Math. 2012, 7, 648–657. [Google Scholar]
- Bede, B.; Fodor, J. Product Type Operations between Fuzzy Numbers and their Applications in Geology. Acta Polytech. Hung. 2006, 3, 123–139. [Google Scholar]
- Jayanth Karthik, N.; Chandrasekaran, E. Solving Fully Fuzzy Linear Systems with Trapezoidal Fuzzy Number Matrices by Partitioning. Int. J. Comput. Appl. 2013, 64, 35–38. [Google Scholar] [CrossRef]
- Gemawati, S.; Nasfianti, I.; Mashadi; Hadi, A. A new method for dual fully fuzzy linear system with trapezoidal fuzzy numbers by QR decomposition. J. Phys. Conf. Ser. 2018, 1116, 022011. [Google Scholar] [CrossRef]
- Abidin, A.S.; Mashadi; Gemawati, S. Algebraic Modification of Trapezoidal Fuzzy Numbers to Complete Fully Fuzzy Linear Equations System Using Gauss-Jacobi Method. Int. J. Manag. Fuzzy Syst. 2019, 5, 40. [Google Scholar] [CrossRef]
- Safitri, Y.; Mashadi. Alternative Fuzzy Algebra to Solve Dual Fully Fuzzy Linear System using ST Decomposition Method. IOSR J. Math. 2019, 15, 32–38. [Google Scholar]
- Mashadi. A New Method for Dual Fully Fuzzy Linear Systems by use LU Factorizations of the Coefficient Matrix. J. Mat. Dan Sains 2010, 15, 101–106. [Google Scholar]
- Mashadi; Safitri, Y.; Sukono. Multiplication and Inverse Operations in Parametric Form of Triangular Fuzzy Number. Math. Stat. 2023, 11, 28–33. [Google Scholar] [CrossRef]
- Siahlooei, E.; Fazeli, S.A.S. An application of interval arithmetic for solving fully fuzzy linear systems with trapezoidal fuzzy number. Adv. Fuzzy Syst. 2018, 2018, 2104343. [Google Scholar] [CrossRef]
- Jorba, L.; Adillon, R. A Generalization of Trapezoidal Fuzzy Numbers Based on Modal Interval Theory. Symmetry 2017, 9, 198. [Google Scholar] [CrossRef]
- Zareamoghaddam, H.; Chronopoulos, A.; Kadijani, M.N.; Zareamoghaddam, Z. Uzawa Algorithms for Fully Fuzzy Linear Systems. Int. J. Comput. Intell. Syst. 2016, 9, 971–983. [Google Scholar] [CrossRef]
- Babakordi, F.; Allahviranloo, T. A Cramer Method for Solving Fully Fuzzy Linear Systems Based on Transmission Average. Control Optim. Appl. Math. 2022, 7, 115–130. [Google Scholar] [CrossRef]
- Kané, L.; Diakité, M.; Kané, S.; Bado, H.; Konaté, M.; Traoré, K. The New Algorithm for Fully Fuzzy Transportation Problem by Trapezoidal Fuzzy Number (A Generalization of Triangular Fuzzy Number). J. Fuzzy Ext. Appl. 2021, 2, 204–225. [Google Scholar] [CrossRef]
- Otadi, M.; Mosleh, M. Minimal solution of fuzzy linear system. Iran. J. Fuzzy Syst. 2015, 12, 89–99. [Google Scholar] [CrossRef]
- Mosleh, M.; Otadi, M.; Abbasbandy, S. Solution of Fully Fuzzy Linear Systems by ST Method. J. Appl. Math. Islam. Azad Univ. Lahijan 2011, 8, 23–31. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Edalatpanah, S.A. A new Approach for Solving Fully Fuzzy Linear Programming by Using the Lexicography Method. Adv. Fuzzy Syst. 2016, 2016, 1538496. [Google Scholar] [CrossRef]
- Otadi, M.; Mosleh, M. Solving fully fuzzy matrix equations. Appl. Math. Model. 2012, 36, 6114–6121. [Google Scholar] [CrossRef]
- Chutia, R.; Mahanta, S.; Datta, D. Linear equations of generalised triangular fuzzy numbers. Ann. Fuzzy Math. Inform. 2013, 6, 371–376. [Google Scholar]
- Gong, Z.; Zhao, W.; Liu, K. A Straightforward approach for solving fully fuzzy linear programming problem with lr-type fuzzy numbers. J. Oper. Res. Soc. Jpn. 2018, 61, 172–185. [Google Scholar] [CrossRef]
- Kumar, M.R.; Subramanian, D.S. Solution of Fuzzy Transportation Problems with Trapezoidal Fuzzy Numbers using Robust Ranking Methodology. Int. J. Pure Appl. Math. 2018, 119, 3763–3775. [Google Scholar]
- Zhang, X.; Ma, W.; Chen, L. New Similarity of Triangular Fuzzy Number and Its Application. Sci. World J. 2014, 2014, 215047. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D. On generalized fuzzy numbers. Iran. J. Fuzzy Syst. 2019, 16, 1–73. [Google Scholar] [CrossRef]
- Vahidi, J.; Rezvani, S. Arithmetic Operations on Trapezoidal Fuzzy Numbers. J. Nonlinear Anal. Appl. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Iswarya, T.; Karpagavalli, S. Iraqi Academics Syndicate International Conference for Pure and Applied Sciences. J. Phys. Conf. Ser. 2021, 1818, 012230. [Google Scholar] [CrossRef]
- Prakash, K.A.; Suresh, M.; Vengataasalam, S. A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept. Math. Sci. 2016, 10, 177–184. [Google Scholar] [CrossRef]
- Fuh, C.-F.; Jea, R.; Su, J.-S. Fuzzy system realiability analysis bases on level (λ,1) interval valued fuzzy number. Inf. Sci. 2014, 272, 185–197. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X. A Trapezoidal Fuzzy Number-Based VIKOR Method with Completely Unknown Weight Information. Symmetry 2023, 15, 559. [Google Scholar] [CrossRef]
- Mardanya, D.; Roy, S.K. New Approach to Solve Fuzzy Multi-Objective Multi-Item Solid Transportation Problem. RAIRO Oper. Res. 2023, 57, 99–120. [Google Scholar] [CrossRef]
- Ganesan, K.; Veeramani, P. Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 2006, 143, 305–315. [Google Scholar] [CrossRef]
- Abbasi, F.; Allahviranloo, T. Solving fully fuzzy linear system: A new solution concept. Inf. Sci. 2022, 589, 608–635. [Google Scholar] [CrossRef]
- Adentude, I.A.; Oladejo, N.; Apio, D. On the Generalisized Inverse of a Matrix. Am. J. Sci. Res. 2010, 7, 77–89. [Google Scholar]
- Mohammadzadeh, A.; Zhang, C.; Alattas, K.A.; El-Sousy, F.F.; Vu, M.T. Fourier-based type-2 fuzzy neural network: Simple and effective for high dimensional problems. Neurocomputing 2023, 547, 126316. [Google Scholar] [CrossRef]
- Zhang, H.; Shu, L.; Liao, S. Generalized Trapezoidal Fuzzy Soft Set and Its Application in Medical Diagnosis. J. Appl. Math. 2014, 2014, 312069. [Google Scholar] [CrossRef]
- Geetha, T.; Usha, A. Application of circulant triangular fuzzy number matrix in Swine Flu. Malaya J. Mat. 2020, 8, 354–357. [Google Scholar] [CrossRef]
- Zulkarnain, M.; Ali, B.; Abdal, S.; Malik, A.; Ali, L.; Ahamad, M.I.; Zafar, Z. Disease Identification Using Trapezoidal Fuzzy Numbers by Sanchez’s Approach. Int. J. Pharm. Sci. Rev. Res. 2020, 61, 13–18. [Google Scholar]
- Mashadi; Hadi, A.; Sukono. Alternative Algebra for Multiplication and Inverse of Interval Number. Math. Stat. 2023, 11, 685–692. [Google Scholar] [CrossRef]
- Dat, L.Q.; Chou, S.-Y.; Dung, C.C.; Yu, V.F. Improved arithmetic operations on generalized fuzzy numbers. In Proceedings of the 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Taipei, Taiwan, 6–8 December 2013; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Chi, H.T.X.; Yu, V.F. Ranking generalized fuzzy numbers based on centroid and Rank Index. Appl. Soft Comput. 2018, 68, 283–292. [Google Scholar] [CrossRef]
- Dutta, P. Comparison of Arithmetic Operations of Generalized Fuzzy Numbers: Case Study in Risk Assessment. Cybern. Syst. 2016, 47, 290–320. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Saneifard, R.; Saneifard, R.; Kiani, F.; Noeiaghdam, S.; Govindan, V. The Best Approximation of Generalized Fuzzy Numbers Based on Scaled Metric. J. Math. 2022, 2022, 1414415. [Google Scholar] [CrossRef]
- Dewanto, T.; Karyati; Emut; Abadi, A.M. Solving the generalized trapezoidal fuzzy number linear programming problem. AIP Conf. Proc. 2022, 2575, 020003. [Google Scholar] [CrossRef]
- Rakesh, K.; Jateen, K.; Kusum, Y.; Elham, K.; Shoayee, D.A.; Wattana, V.; Kamal, G.; Ketan, K.; Gaurav, D. A Systematic Review on Generalized Fuzzy Numbers and Its Applications: Past, Present and Future. Arch. Comput. Methods Eng. 2022, 29, 5213–5236. [Google Scholar] [CrossRef]
- Anta Sari, D.R.; Mashadi. New Arithmetic Triangular Fuzzy Number for Solving Fully Fuzzy Linear System using Inverse Matrix. Int. J. Sci. Basic Appl. Res. 2019, 46, 169–180. [Google Scholar]
- Desmita, Z.; Mashadi. Alternative Multiplying Triangular Fuzzy Number and Applied in Fully Fuzzy Linear System. Am. Sci. Res. J. Eng. Technol. Sci. 2019, 56, 113–123. [Google Scholar]
- Anand, M.J.; Bharatraj, J. Cut Sets on Trapezoidal Fuzzy Number and Intuitionistic Fuzzy Number: A New Perspective. Int. J. Pure Apllied Math. 2017, 112, 749–762. [Google Scholar] [CrossRef]
- Tuffaha, M.Z.; Alrefaei, M.H. General Simplex Method for Fully Fuzzy Linear Programming with the Piecewise Linear Fuzzy Number. Nonlinear Dyn. Syst. Theory 2020, 20, 451–460. [Google Scholar]
- Abu-Saman, A.M. Solution of Linearly-Dependent Equations by Generalized Invers of a Matrix. Int. J. Sci. Emerg. Technol. 2012, 4, 138–142. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashadi; Safitri, Y.; Sukono; Prihanto, I.G.; Johansyah, M.D.; Saputra, M.P.A. The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations. Mathematics 2024, 12, 946. https://doi.org/10.3390/math12070946
Mashadi, Safitri Y, Sukono, Prihanto IG, Johansyah MD, Saputra MPA. The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations. Mathematics. 2024; 12(7):946. https://doi.org/10.3390/math12070946
Chicago/Turabian StyleMashadi, Yuliana Safitri, Sukono, Igif Gimin Prihanto, Muhamad Deni Johansyah, and Moch Panji Agung Saputra. 2024. "The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations" Mathematics 12, no. 7: 946. https://doi.org/10.3390/math12070946
APA StyleMashadi, Safitri, Y., Sukono, Prihanto, I. G., Johansyah, M. D., & Saputra, M. P. A. (2024). The Inverse and General Inverse of Trapezoidal Fuzzy Numbers with Modified Elementary Row Operations. Mathematics, 12(7), 946. https://doi.org/10.3390/math12070946