Next Article in Journal
Modeling and Solution Algorithm for Green Lock Scheduling Problem on Inland Waterways
Previous Article in Journal
Spatio-Temporal Contrastive Heterogeneous Graph Attention Networks for Session-Based Recommendation
Previous Article in Special Issue
Derivations of Incidence Algebras
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Infinite Classes for Normal Trimagic Squares of Even Orders Using Row–Square Magic Rectangles

1
College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
2
Institute of Xizang Geological Survey, Lhasa 850000, China
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(8), 1194; https://doi.org/10.3390/math12081194
Submission received: 6 March 2024 / Revised: 10 April 2024 / Accepted: 14 April 2024 / Published: 16 April 2024
(This article belongs to the Special Issue Algebra and Discrete Mathematics 2023)

Abstract

:
As matrix representations of magic labelings of related hypergraphs, magic squares and their various variants have been applied to many domains. Among various subclasses, trimagic squares have been investigated for over a hundred years. The existence problem of trimagic squares with singly even orders and orders 16n has been solved completely. However, very little is known about the existence of trimagic squares with other even orders, except for only three examples and three families. We constructed normal trimagic squares by using product constructions, row–square magic rectangles, and trimagic pairs of orthogonal diagonal Latin squares. We gave a new product construction: for positive integers p, q, and r having the same parity, other than 1, 2, 3, or 6, if normal p × q and r × q row–square magic rectangles exist, then a normal trimagic square with order pqr exists. As its application, we constructed normal trimagic squares of orders 8q3 and 8pqr for all odd integers q not less than 7 and p, r ∈ {7, 11, 13, 17, 19, 23, 29, 31, 37}. Our construction can easily be extended to construct multimagic squares.

1. Introduction

As the oldest known combinatorial designs, magic squares and their various variants have been applied to many fields, such as engineering technology, cryptography, physics, pedagogy, number theory, matrix algebra, and graph theory. Here are some specific examples. By using various magic squares, many researchers [1,2,3,4] proposed new physical repositioning techniques to maximize power output and enhance the solar photovoltaic array’s performance. Kravchenko et al. [5] constructed synthesizing nonequidistant sparse antenna arrays based on magic squares providing a high degree of dilution and sufficiently small side radiation. Magic squares have been used to encrypt and decrypt images [6,7,8]. Hyodo and Kitabayashi [9] established the relationship between magic squares with the Dirac flavor neutrino mass matrix. In [10], to group students more appropriately to increase learning achievement, Peng et al. provided a new magic square-based heterogeneous grouping algorithm. In [11], by rearranging the rows of a special magic square of order 2 n 3 , Sim and Wong showed that there exists an arrangement of m consecutive integers containing an ( n 1 ) -term monotone arithmetic progression and avoiding an n-term monotone arithmetic progression. In [12], Nordgren investigated various matrix operations of special magic squares and obtained many new results. Magic squares and their many relatives can be viewed as matrix representations of magic labelings of related set systems or hypergraphs [13,14] and have been used to construct some labelings of graphs [15,16,17,18,19].
Let n and d be two positive integers, and let I n = { 0 , 1 , , n 1 } . Let A be a d-dimensional matrix of side or order n consisting of integers with entries a ( x ) or a i 1 , , i d , where x I n d or i 1 , , i d I n . A row, line, or hyperedge of A is an n-tuple of positions or points ( i 1 , , i d ) such that the number of identical coordinates for any two points is exactly d 1 . A (space) diagonal is an n-tuple of points { ( x , i 2 , , i d ) : i k = x or n 1 x , 2 k d , x I n } . Let L n d denote the set of d n d 1 rows and 2 d 1 diagonals of any d-dimensional matrix of side n. Obviously, ( I n d , L n d ) is an n-uniform hypergraph or a set system. Similar to the definition for a magic labeling of a set system [13], we give the following definitions. A magic labeling of the hypergraph ( I n d , L n d ) is a labeling a of its points by integers such that every line has the same sum, that is, x L a ( x ) = c for some constant c and L L n d ; we call the constant c the magic sum. Let A = ( a ( x ) ) for x I n d ; then, the matrix A can be thought of as the label matrix of the above labeling a of the hypergraph ( I n d , L n d ) . We call the matrix A a d-dimensional magic hypercube of side or order n. Other types of magic hypercubes can be defined similarly. A d-dimensional magic hypercube with side n is normal if it consists of n d consecutive integers. Usually, a two-dimensional magic hypercube of order n is called a magic square of order n (MS ( n ) ). The existence problem of normal magic hypercubes has been completely solved [20,21].
In this paper, we are interested in investigating multimagic squares. Let n, d, and t be positive integers. Let A and B be integer matrices with the same size and let A × B denote their Hadamard product, with ( i , j ) entry a i , j b i , j . Based on the reference [22], we write A × d = ( a i , j d ) ; obviously, A × d is the Hadamard product A × × A (where the matrix A appears d times). Now, let A have order n; then, A is a t-multimagic square (MS ( n , t ) ) if, for d { 1 , , t } , A × d is a magic square. We denote by an NMS ( n , t ) a normal MS ( n , t ) . Usually, we call an MS ( n , 2 ) a bimagic square and an MS ( n , 3 ) a trimagic square. Many researchers have done a lot of work on the existence and construction of normal multimagic squares [23,24,25,26,27,28,29,30].
We now review the research on normal trimagic squares with even orders. In 2007, Derksen et al. [22] proved that there is no NMS ( 2 n , 3 ) for every positive odd integer n. In 2023, Hu et al. [25] proved that an NMS ( 16 n , 3 ) exists for all positive integers n. However, very little is known about the existence of trimagic squares of doubly even orders not divisible by 16, except for the following three examples and three families. In 2017, based on known bimagic squares and trimagic squares of orders 12, 24, and 40, Li et al. [31] showed that there is an NMS ( m n , 3 ) for m { 12 , 24 , 40 } and infinitely many odd positive integers n. Therefore, the existence problem of normal trimagic squares of even orders is at present far from being solved.
This paper aims to construct new infinite families for normal trimagic squares of even orders. Our construction tools include a known product construction (see Section 2, Lemma 2), two new product constructions (see Section 3, Theorem 1 and Lemma 9), trimagic pairs, and (quasi-normal) row–square magic rectangles (new notions, see Section 2 for the definitions).
The outline of the rest of this paper is as follows. Section 2 presents some related preliminaries, including notations, notions, and lemmas. In Section 3, we prove main results. We first show that one can construct an NMS ( n , 3 ) based on a trimagic pair of orthogonal diagonal Latin squares and construct an NMS ( p q r , 3 ) based on normal p × q and r × q row–square magic rectangles for appropriate positive integers p, q, and r. Furthermore, we prove several lemmas and theorems for the existence of quasi-normal even row–square magic rectangles and construct their several new infinite classes. Finally, we provide new families of normal trimagic squares of even orders. In Section 4, we give conclusions of the work.

2. Preliminaries

Let T be an n-set. For any m × n integer matrix A, let | A | = ( | a i , j | ) , where | a i , j | denotes the absolute value of a i , j ; we denote by S A the entry-set of A and index the rows by I m and columns by I n . An m × m array A is a diagonal Latin square over the set T with order m (DLS ( m ) ) if
{ a k , j : j I m } = { a i , k : i I m } = { a j , j : j I m } = { a j , n 1 j : j I m } = T
for k I m . Two DLS ( m ) s C and D are called orthogonal if { ( c i , j , d i , j ) : i , j I m } = S C × S D . The following can be found in [32].
Lemma 1
([32]). Two orthogonal DLS ( m ) s exist if and only if m { 2 , 3 , 6 } .
Remark 1.
Let A be a DLS ( m ) over I m ; then, A is an MS ( m , t ) for every positive t. In fact, for L L m 2 , by definition, we know that { a i , j : ( i , j ) L } = I m , thus, we obtain ( i , j ) L a i , j t = x I m x t = x = 0 m 1 x t , which is independent of lines and, hence, is a constant.
Let C and D be two orthogonal DLS ( n ) s over I n . The pair ( C , D ) is a trimagic pair (TMP ( n ) ) if C × D , C × 2 × D , and C × D × 2 are all magic squares.
Let A be an m × n integer matrix. We call A a row-magic rectangle if the row sums of A are all a constant. If A and A × 2 are both row-magic rectangles, then we call A a bimagic row-magic rectangle (BRMR ( m , n ) ). A row-magic rectangle is called a magic rectangle if its transpose is also a row-magic rectangle. We call a BRMR ( m , n )  A a row–square magic rectangle (RSMR ( m , n ) ) if A is a magic rectangle. Similarly, one can define a t-multimagic rectangle. An integer matrix is normal if it consists of consecutive integers. Similar to a bimagic square, we call a 2-multimagic rectangle a bimagic rectangle. A bimagic rectangle and its transpose are row–square magic rectangles, but not converse. For results of multimagic rectangles, the interested reader is referred to the references [33,34].
Let J m × n be an m × n all ones matrix. For integers c and d with c d and c d ( mod   2 ) , let [ c , d ] 2 denote the set { c , c + 2 , , d 2 , d } . A BRMR ( p , 2 q )  A is odd-normal if S | A | = [ 1 , 4 p q 1 ] 2 . An m × n integer matrix A is quasi-normal if S A = [ 1 m n , m n 1 ] 2 . An odd-normal BRMR ( p , 2 q )  A is balanced if A has an equal number of positive and negative numbers in each row and each row sum of | A | is the same.
To construct new families of trimagic squares of even orders, we need the following lemmas.
Lemma 2
([31]). For positive integers m and t, if there exist an NMS ( 2 m , 2 t + 1 ) and an NMS ( n , 2 t ) , then there exists an NMS ( 2 m n , 2 t + 1 ) .
Lemma 3
([31]). There exists an NMS ( n , 3 ) if n { 12 , 24 , 40 } { 2 k : k > 3 } .
Lemma 4
([29]). There exists an NMS ( n , 2 ) if n { 2 u : u 4 } { p q : odd p , q 5 } [ 9 , 63 ] 2 .
Remark 2.
By Lemmas 2–4, there exists an NMS ( 24 q , 3 ) for odd q 3 .

3. Main Results

In this section, we firstly construct an NMS ( n , 3 ) using a trimagic pair of orthogonal DLS ( n ) s, then, based on row–square magic rectangles, establish a new product construct theorem, finally, provide new families of trimagic squares of even orders by constructing new corresponding infinite classes of row–square magic rectangles.

3.1. Construction of an NMS ( m , 3 )

In this section, we extend Construction 2.1 in [35] for a magic pair of orthogonal bimagic squares to a trimagic pair of orthogonal diagonal Latin squares. The following can be obtained by modifying the proof in [35].
Lemma 5.
If there exists a TMP ( m ) , then there exists an NMS ( m , 3 ) .
Proof. 
Let ( C , D ) be a TMP ( m ) and F = m C + D . By Remark 1, we know that C and D are MS ( m , 3 ) s. Next, we prove that F is an NMS ( m , 3 ) . By the proof of Construction 2.1 in [35], we know that F is an NMS ( m , 2 ) . Therefore, it suffices to show that F × 3 is an MS ( m ) .
By hypothesis, C × 3 , D × 3 , C × 2 × D , and C × D × 2 are MS ( m ) s. Let S C × 3 , S D × 3 , S C × 2 × D , and S C × D × 2 be the magic sums of C × 3 , D × 3 , C × 2 × D , and C × D × 2 , respectively. For L L m 2 , we obtain
( u , v ) L f u , v 3 = ( u , v ) L ( m c u , v + d u , v ) 3 = m 3 ( u , v ) L c u , v 3 + 3 m 2 ( u , v ) L c u , v 2 d u , v + 3 m ( u , v ) L c u , v d u , v 2 + ( u , v ) L d u , v 3 = m 3 S C × 3 + 3 m 2 S C × 2 × D + 3 m S C × D × 2 + S D × 3 .
It follows that F × 3 is a magic square. □

3.2. A New Product Construction

Based on Lemma 5, to obtain an NMS ( p q r , 3 ) , it suffices to find a TMP ( p q r ) . In this section, we address this problem using row–square magic rectangles and orthogonal diagonal Latin squares.
Theorem 1.
Let p, q, and r be positive integers, other than  1 , 2 , 3 ,  or  6  having the same parity. If there exist a normal RSMR ( p , q )  and a normal RSMR ( r , q ) , then there exists an NMS ( p q r , 3 ) .
Proof. 
Let m = p q r . By Lemma 1, we can suppose that A and A ¯ are a pair of orthogonal DLS ( p ) s over I p , B and B ¯ are a pair of orthogonal DLS ( q ) s over I q , and C and C ¯ are a pair of orthogonal DLS ( r ) s over I r . We write A = ( a u , x ) , A ¯ = ( a ¯ u , x ) , B = ( b v , y ) , B ¯ = ( b ¯ v , y ) , C = ( c w , z ) , and C ¯ = ( c ¯ w , z ) , where u , x I p , v , y I q , and w , z I r . Let F be an r × q normal row–square magic rectangle over I q r and we write F = ( f k , l ) . Let H be a p × q normal row–square magic rectangle over I p q , and we write H = ( h s , t ) . Let F r , F c , and F r , 2 denote the row-magic sum of F, column-magic sum of F, and row-magic sum of F × 2 , respectively, and let H r , H c and H r , 2 denote the row-magic sum of H, column-magic sum of H, and row-magic sum of H × 2 , respectively. Let S a , S a , 2 , S c , and S c , 2 denote the magic sums of A, A × 2 , C ¯ , and C ¯ × 2 , respectively. Let
E = ( e i , j ) , G = ( g i , j ) ,
where e i , j = q r a u , x + f c w , z , b v , y , g i , j = p q c ¯ w , z + h a ¯ u , x , b ¯ v , y , i = q r u + r v + w , j = q r x + r y + z , u , x I p , v , y I q , w , z I r , i , j I m .
Next, we prove that ( E , F ) is a TMP ( m ) .
(i) We prove that E and G are DLS ( m ) s. Noting that A, B, and C are all diagonal Latin squares, for j I m , we have
{ e i , j : i I m } = u I p v I q w I r ( q r a u , x + f c w , z , b v , y ) = u I p v I q w I r ( q r a u , x + f w , b v , y ) = u I p v I q w I r ( q r a u , x + f w , v ) = u I p v I q w I r ( q r u + f w , v ) = I m .
Similarly, we obtain
{ e i , j : j I m } = I m , i I m , { e i , i : i I m } = I m , { e i , m 1 i : i I m } = I m .
Therefore, E is a DLS ( m ) . Similarly, one can prove that G is a DLS ( m ) .
(ii) We prove that E and G are orthogonal. Let i * = q r u * + r v * + w * and j * = q r x * + r y * + z * , where u * , x * I p , v * , y * I q , w * , z * I r , and i * , j * I m . We suppose that e i , j = e i * , j * and g i , j = g i * , j * . We have
q r a u , x + f c w , z , b v , y = q r a u * , x * + f c w * , z * , b v * , y * , p q c ¯ w , z + h a ¯ u , x , b ¯ v , y = p q c ¯ w * , z * + h a ¯ u * , x * , b ¯ v * , y * .
Noting that
f c w , z , b v , y , f c w * , z * , b v * , y * I q r , a u , x , a u * , x * I p , h a ¯ u , x , b ¯ v , y , h a ¯ u * , x * , b ¯ v * , y * I p q , c ¯ w , z , c ¯ w * , z * I r ,
we obtain
a u , x = a u * , x * , f c w , z , b v , y = f c w * , z * , b v * , y * , c ¯ w , z = c ¯ w * , z * , h a ¯ u , x , b ¯ v , y = h a ¯ u * , x * , b ¯ v * , y * .
Since F and H are both normal, we get
a u , x = a u * , x * , c w , z = c w * , z * , b v , y = b v * , y * , c ¯ w , z = c ¯ w * , z * , a ¯ u , x = a ¯ u * , x * , b ¯ v , y = b ¯ v * , y * .
Therefore, we have
( a u , x , a ¯ u , x ) = ( a u * , x * , a ¯ u * , x * ) , ( b v , y , b ¯ v , y ) = ( b v * , y * , b ¯ v * , y * ) , ( c w , z , c ¯ w , z ) = ( c w * , z * , c ¯ w * , z * ) .
Since A and A ¯ are orthogonal, B and B ¯ are orthogonal, and C and C ¯ are orthogonal, we obtain
u = u * , v = v * , w = w * , x = x * , y = y * , z = z * ,
which indicates that i = i * and j = j * . It follows that E and G are orthogonal. By (i), E and G are orthogonal DLS ( m ) s over I m .
(iii) We prove that E × G is an MS ( m ) . For j I m , we can write j = q r x + r y + z , where x I p , y I q , and z I r . We get
i = 0 m 1 e i , j g i , j = u = 0 p 1 v = 0 q 1 w = 0 r 1 ( q r a u , x + f c w , z , b v , y ) ( p q c ¯ w , z + h a ¯ u , x , b ¯ v , y ) = p q 2 r v = 0 q 1 u = 0 p 1 w = 0 r 1 a u , x c ¯ w , z + q r w = 0 r 1 u = 0 p 1 v = 0 q 1 a u , x h a ¯ u , x , b ¯ v , y + p q u = 0 p 1 w = 0 r 1 v = 0 q 1 c ¯ w , z f c w , z , b v , y + u = 0 p 1 v = 0 q 1 w = 0 r 1 f c w , z , b v , y h a ¯ u , x , b ¯ v , y = p q 3 r S a S c + q r 2 S a H r + p 2 q S c F r + p F c H r .
Similarly, we have
j = 0 m 1 e i , j g i , j = S E × G ,   for i I m ,   i = 0 m 1 e i , i g i , i = S E × G , i = 0 m 1 e i , m 1 i g i , m 1 i = S E × G ,
where S E × G = p q 3 r S a S c + q r 2 S a H r + p 2 q S c F r + p F c H r . Thus, E × G is an MS ( m ) .
(iv) We prove that E × 2 × G is an MS ( m ) . For j I m , we can write j = q r x + r y + z , where x I p , y I q , and z I r . We get
i = 0 m 1 e i , j 2 g i , j = u = 0 p 1 v = 0 q 1 w = 0 r 1 ( q r a u , x + f c w , z , b v , y ) 2 ( p q c ¯ w , z + h a ¯ u , x , b ¯ v , y ) = p q 3 r 2 v = 0 q 1 u = 0 p 1 w = 0 r 1 a u , x 2 c ¯ w , z + q 2 r 2 w = 0 r 1 u = 0 p 1 v = 0 q 1 a u , x 2 h a ¯ u , x , b ¯ v , y + 2 p q 2 r u = 0 p 1 w = 0 r 1 v = 0 q 1 a u , x c ¯ w , z f c w , z , b v , y + 2 q r u = 0 p 1 v = 0 q 1 w = 0 r 1 a u , x f c w , z , b v , y h a ¯ u , x , b ¯ v , y + p q u = 0 p 1 w = 0 r 1 v = 0 q 1 c ¯ w , z f c w , z , b v , y 2 + w = 0 r 1 v = 0 q 1 u = 0 p 1 f c w , z , b v , y 2 h a ¯ u , x , b ¯ v , y = p q 4 r 2 S a , 2 S c + q 2 r 3 S a , 2 H r + 2 p q 2 r S a S c F r + 2 q r S a F c H r + p 2 q S c F r , 2 + r H c F r , 2 .
Similarly, we have
j = 0 m 1 e i , j 2 g i , j = S E × 2 × G ,   for i I m ,   i = 0 m 1 e i , i 2 g i , i = S E × 2 × G , i = 0 m 1 e i , m 1 i 2 g i , m 1 i = S E × 2 × G ,
where S E × 2 × G = p q 4 r 2 S a , 2 S c + q 2 r 3 S a , 2 H r + 2 p q 2 r S a S c F r + 2 q r S a F c H r + p 2 q S c F r , 2 + r H c F r , 2 . Thus, E × 2 × G is an MS ( m ) .
(v) We prove that E × G × 2 is an MS ( m ) . For j I m , we can write j = q r x + r y + z , where x I p , y I q , and z I r . We get
i = 0 m 1 e i , j g i , j 2 = u = 0 p 1 v = 0 q 1 w = 0 r 1 ( q r a u , x + f c w , z , b v , y ) ( p q c ¯ w , z + h a ¯ u , x , b ¯ v , y ) 2 = p 2 q 3 r v = 0 q 1 u = 0 p 1 w = 0 r 1 a u , x c ¯ w , z 2 + p 2 q 2 u = 0 p 1 w = 0 r 1 v = 0 q 1 c ¯ w , z 2 f c w , z , b v , y + 2 p q 2 r u = 0 p 1 w = 0 r 1 v = 0 q 1 a u , x c ¯ w , z h a ¯ u , x , b ¯ v , y + 2 p q w = 0 r 1 v = 0 q 1 u = 0 p 1 c ¯ w , z f c w , z , b v , y h a ¯ u , x , b ¯ v , y + q r w = 0 r 1 u = 0 p 1 v = 0 q 1 a u , x h a ¯ u , x , b ¯ v , y 2 + u = 0 p 1 v = 0 q 1 w = 0 r 1 f c w , z , b v , y h a ¯ u , x , b ¯ v , y 2 = p 2 q 4 r S a S c , 2 + p 3 q 2 S c , 2 F r + 2 p q 2 r S a S c H r + 2 p q S c F r H c + q r 2 S a H r , 2 + p F c H r , 2 .
Similarly, we have
j = 0 m 1 e i , j g i , j 2 = S E × G × 2 ,   for i I m ,   i = 0 m 1 e i , i g i , i 2 = S E × G × 2 ,   i = 0 m 1 e i , m 1 i g i , m 1 i 2 = S E × G × 2 ,
where S E × G × 2 = p 2 q 4 r S a S c , 2 + p 3 q 2 S c , 2 F r + 2 p q 2 r S a S c H r + 2 p q S c F r H c + q r 2 S a H r , 2 + p F c H r , 2 . It follows that E × G × 2 is an MS ( m ) .
In summary, we know that ( E , G ) is a TMP ( m ) . Based on Lemma 5, there exists an NMS ( m , 3 ) , m E + G . □

3.3. Row–Square Magic Rectangles

In this section, our main purpose is to construct several infinite classes of row–square magic rectangles. For this purpose, we need the following lemmas.
Lemma 6.
If an odd-normal BRMR ( p , 2 q ) exists, then a quasi-normal RSMR ( 2 p , 2 q ) exists.
Proof. 
Let A be an odd-normal BRMR ( p , 2 q ) and B = A A . Clearly, A is also an odd-normal BRMR ( p , 2 q ) and S | A | = S | A | . Obviously, if a S A , then a S A . Therefore, we have S A S A = a S | A | { a , a } = [ 1 4 p q , 1 ] 2 [ 1 , 4 p q 1 ] 2 = [ 1 4 p q , 4 p q 1 ] 2 . Obviously, each column sum of B is zero. In summary, we know at once that the conclusion holds. □
Based on Lemma 6, to obtain a quasi-normal RSMR ( 2 p , 2 q ) , it is sufficient to find an odd-normal BRMR ( p , 2 q ) .
Lemma 7.
If a quasi-normal RSMR ( 2 p , 2 q ) exists, then a normal RSMR ( 2 p , 2 q ) exists.
Proof. 
If A is a quasi-normal RSMR ( 2 p , 2 q ) , then 1 2 ( A + ( 4 p q 1 ) J 2 p × 2 q ) is a normal RSMR ( 2 p , 2 q ) . □
Based on Lemmas 6 and 7, to obtain a normal RSMR ( 2 p , 2 q ) , it suffices to find an odd-normal BRMR ( p , 2 q ) .
Lemma 8.
Let p, q, and r be positive integers with q 2 . If there exist an odd-normal BRMR ( p , 2 q ) and balanced BRMR ( p , 4 r ) , then there exists an odd-normal BRMR ( p , 2 q + 4 r ) .
Proof. 
Let A be an odd-normal BRMR ( p , 2 q ) and B an odd-normal balanced BRMR ( p , 4 r ) . Let k = 4 p q and C be a p × ( 2 q + 4 r ) matrix defined by
c i , j = a i , j j I 2 q , c i , j + 2 q = b i , j + s i g n ( b i , j ) k j I 4 r , i I p ,
where sign ( b i , j ) = b i , j / | b i , j | . Clearly, sign ( b i , j ) b i , j = | b i , j | . Now, we prove that each row sum of C is zero. It should be noted that row sums of A and B are zero and B is balanced; for i I p , we have
j I 2 q + 4 r c i , j = j I 2 q a i , j + j I 4 r ( b i , j + s i g n ( b i , j ) k ) = j I 2 q a i , j + j I 4 r b i , j + k j I 4 r s i g n ( b i , j ) = 0 + 0 + k × 0 = 0 .
It follows that each row sum of C is zero. Next, we show that C is odd-normal. It should be noted that | b i , j + s i g n ( b i , j ) k | = k + | b i , j | ; we have
{ | c i , j | : i I p , j I 2 q + 4 r } = { | a i , j | : i I p , j I 2 q } { | b i , j + s i g n ( b i , j ) k | : i I p , j I 4 r } = [ 1 , k 1 ] 2 { k + | b i , j | : i I p , j I 4 r } = [ 1 , k 1 ] 2 [ k + 1 , k + 8 p r 1 ] 2 = [ 1 , 2 p ( 2 q + 4 r ) 1 ] 2 ,
which indicates that C is odd-normal. Finally, we prove that C × 2 is a row-magic rectangle. Let S | B | , S A × 2 , and S B × 2 denote row sums of | B | , A × 2 , and B × 2 , respectively. For i I p , we have
j I 2 q + 4 r c i , j 2 = j I 2 q a i , j 2 + j I 4 r ( b i , j + s i g n ( b i , j ) k ) 2 = S A × 2 + j I 4 r b i , j 2 + 2 k j I 4 r | b i , j | + j I 4 r k 2 = S A × 2 + S B × 2 + 2 k S | B | + 4 r k 2 ,
which is independent of i and, hence, is a constant. Thus C × 2 is a row-magic rectangle. In summary, C is an odd-normal BRMR ( p , 2 q + 4 r ) . □
Lemma 9.
Let p, q, and r be positive integers with q 2 . If there exist an odd-normal balanced BRMR ( p , 4 r ) and 2r odd-normal BRMR ( p , 2 q + 2 m ) for m I 2 r , then there exists an odd-normal BRMR ( p , 2 n ) for n q .
Proof. 
Let v [ 2 q , 2 q + 4 r 2 ] 2 and u be a nonnegative integer. Now, by induction, we prove the statement P v ( u ) : There exists an odd-normal BRMR ( p , 4 r u + v ) for u 0 . Firstly, P v ( 0 ) is obviously true by hypothesis. Secondly, we suppose that P v ( w ) is true for nonnegative integer w, that is, there exists an odd-normal BRMR ( p , 4 r w + v ) . Finally, we prove that P v ( w + 1 ) is correct, in other word, an odd-normal BRMR ( p , 4 r ( w + 1 ) + v ) exists. It should be noted that there exist an odd-normal balanced BRMR ( p , 4 r ) by hypothesis and an odd-normal BRMR ( p , 4 r w + v ) by our induction hypothesis; by Lemma 8 we see that there exists an odd-normal BRMR ( p , 4 r w + v + 4 r ) , that is, BRMR ( p , 4 r ( w + 1 ) + v ) . It follows that the statement P v ( w + 1 ) is true. For v [ 2 q , 2 q + 4 r 2 ] 2 , by induction, P v ( u ) is true for u 0 . In summary, there exists an odd-normal BRMR ( p , 2 n ) for n q . □
Next, we construct several infinite classes of odd-normal bimagic row-magic rectangles.
Lemma 10.
There exists an odd-normal BRMR ( p , 2 q ) for p { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } and q 3 .
Proof. 
See Appendix A. □

3.4. New Classes of Trimagic Squares of Even Orders

In the following, we provide two applications of Theorem 1.
Theorem 2.
There exists an NMS ( 8 p q r , 3 ) for p , r { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } and odd q not less than 7.
Proof. 
Let S = { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } . By Lemma 10, there exists an odd-normal BRMR ( p , 2 q ) for p S and q 3 . By Lemma 7, there exists a normal BRMR ( 2 p , 2 q ) for p S and q 3 . Therefore, for p , r S and odd q not less than 7, there exist a normal BRMR ( 2 p , 2 q ) and a normal BRMR ( 2 r , 2 q ) . Since 2 p , 2 q , 2 r { 1 , 2 , 3 , 6 } , by Lemma 1, we know that there is a pair of orthogonal DLS ( 2 n ) s over I 2 n for n { p , q , r } . By Theorem 1, we prove that there exists an NMS ( 2 p × 2 r × 2 q , 3 ) , that is, NMS ( 8 p q r , 3 ) . □
Theorem 3.
There exists an NMS ( 8 q 3 , 3 ) for all positive integers q greater than 1.
Proof. 
When q = 2 , we have 8 q 3 = 8 × 2 3 = 64 . By Lemma 3, there is an NMS ( 8 × 2 3 , 3 ) . When q = 3 , we have 8 q 3 = 8 × 3 3 = 24 × 9 . Since there is an NMS ( 24 , 3 ) by Lemma 3 and there is an NMS ( 9 , 2 ) by Lemma 4, there is an NMS ( 8 × 3 3 , 3 ) by Lemma 2. Based on Lemma 4, for every positive integer q greater than 3, there is a normal RSMR ( 2 q , 2 q ) . Since 2 q { 1 , 2 , 3 , 6 } , by Lemma 1, we know that there is a pair of orthogonal DLS ( 2 q ) s over I 2 q . By Theorem 1, we prove that there is an NMS ( 2 q × 2 q × 2 q , 3 ) , that is, NMS ( 8 q 3 , 3 ) . □
Let Ω = { q 3 : q integer , q 2 } { p q r : p , r { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } , odd q 7 } . Then, by Lemma 2 and Theorems 2 and 3, we have
Corollary 1.
There is an NMS ( 8 m n , 3 ) for m Ω and n { p q : odd p , q 5 } [ 9 , 63 ] 2 .

4. Conclusions

In this paper, by giving a new product construction theorem, we reduced the problem of constructing one normal trimagic square of order p q r to the problem of constructing two normal p × q and r × q row–square magic rectangles; we especially reduced the problem of constructing normal 2 p × 2 q row–square magic rectangles to the problem of constructing odd-normal p × 2 q row–square magic rectangles. More precisely, we proved that there exist normal trimagic squares of orders 8 u 3 and 8 p q r for all positive integers u with u 2 and p , r { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } and odd q not less than 7. These results are new to previous literature. Our new product construction method can easily be extended to construct multimagic squares.

Author Contributions

Conceptualization, F.P. and C.H.; methodology, C.H. and F.P.; writing—original draft preparation, F.P. and C.H.; writing—review and editing, F.P. and C.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors would like to thank X. Wang of Chengdu University of Technology for her advice. The authors wish to thank the anonymous referees for their comments and suggestions that much improved the quality of this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

The Proof of Lemma 10. 
Let
A 7 = 83 19 1 3 17 81 75 39 7 5 49 67 71 43 13 9 57 61 77 29 21 11 53 63 79 31 15 25 27 73 69 35 33 23 55 59 65 41 37 45 47 51 , B 7 = 79 75 69 1 3 55 81 85 83 73 63 5 7 43 77 97 95 67 53 9 11 41 71 101 89 51 47 37 13 17 91 103 93 87 29 15 33 35 49 107 105 61 31 27 19 39 57 109 99 59 45 21 23 25 65 111 ,
C 7 = 91 89 85 83 1 3 25 103 107 111 97 95 77 75 5 7 19 99 109 115 105 87 79 67 11 9 15 93 113 119 123 81 69 65 13 17 27 71 101 135 129 73 63 57 29 21 23 59 117 131 127 125 35 33 31 49 51 53 61 137 139 133 41 37 39 43 45 47 55 121 , D 7 = 41 19 1 55 69 75 37 21 3 53 65 77 33 23 5 51 67 71 39 17 7 49 63 83 31 27 9 43 59 73 29 25 11 45 57 79 35 15 13 47 61 81 ,
A 11 = 127 35 1 3 29 129 125 47 7 5 57 117 131 41 9 11 59 111 121 61 13 15 31 123 107 93 17 25 53 105 101 89 19 39 71 99 115 75 21 49 77 85 113 65 27 23 87 95 109 73 33 45 79 91 103 63 51 37 83 97 119 55 43 67 69 81 , B 11 = 123 119 109 1 3 93 127 129 121 115 111 5 7 73 133 139 137 117 87 11 9 69 131 143 141 135 63 13 15 89 97 151 149 107 79 17 19 55 125 153 157 91 83 21 23 65 95 169 161 103 45 43 25 59 101 167 163 105 57 27 37 67 77 171 147 145 31 29 51 61 81 159 165 75 71 41 33 47 99 173 155 113 49 35 39 53 85 175 ,
C 11 = 179 151 109 87 23 1 55 131 161 201 181 153 105 85 25 3 53 129 165 199 207 183 159 5 27 57 77 107 127 149 171 143 101 83 51 7 29 125 185 203 177 147 123 103 9 31 49 81 175 205 191 167 121 59 11 33 71 95 141 209 163 133 119 73 63 13 35 97 189 217 219 193 139 15 39 65 69 93 113 157 197 145 111 61 37 17 75 89 155 215 169 135 115 91 41 19 47 79 195 211 187 137 117 67 43 21 45 99 173 213 , D 11 = 63 31 1 87 109 119 65 29 3 83 107 123 55 33 5 85 105 125 53 35 7 81 101 129 61 27 9 79 103 131 51 39 11 73 97 115 47 41 13 69 99 121 49 43 15 67 91 111 59 25 17 75 95 117 57 23 19 77 93 127 45 37 21 71 89 113 ,
A 13 = 151 43 3 1 49 147 155 51 7 5 91 117 149 59 9 11 75 131 153 53 13 15 77 127 135 99 17 19 85 113 125 101 21 27 35 143 133 87 23 41 81 121 123 105 25 71 79 103 145 93 29 31 63 115 139 111 33 61 73 83 129 65 57 37 95 119 137 109 39 45 55 107 141 67 47 69 89 97 , B 13 = 161 151 103 1 33 73 127 183 167 145 101 3 31 77 123 185 169 141 71 35 5 95 129 187 159 153 75 29 7 99 121 189 163 149 67 37 9 97 115 195 173 139 93 11 39 61 125 191 179 137 87 13 51 53 119 193 165 113 83 55 15 49 155 197 175 105 89 47 17 57 143 199 171 135 65 45 19 81 109 207 157 147 91 21 27 69 117 203 177 131 85 23 41 63 107 205 181 133 59 43 25 79 111 201 ,
C 13 = 211 195 177 65 1 27 103 129 155 235 237 213 199 3 29 67 99 125 151 175 209 181 153 101 5 31 61 121 197 239 193 179 147 123 7 33 63 95 217 241 215 203 127 69 35 9 81 149 167 243 247 173 145 85 11 37 71 119 189 223 219 207 137 73 13 39 79 115 171 245 221 201 139 75 15 41 83 117 157 253 231 183 133 87 17 43 77 109 165 257 187 163 143 111 47 19 57 93 227 255 185 169 141 105 51 21 55 91 233 251 229 161 131 107 23 49 59 89 205 249 191 159 135 113 53 25 45 97 225 259 , D 13 = 77 35 1 101 129 153 71 37 3 103 127 141 67 39 5 99 125 149 63 41 7 97 123 151 65 43 9 89 117 155 75 31 11 93 119 145 59 47 13 81 121 147 57 49 15 85 109 139 55 51 17 79 111 143 53 45 19 87 113 137 69 29 21 95 107 131 73 27 23 83 115 135 61 33 25 91 105 133 ,
A 17 = 199 43 1 3 37 201 203 39 7 5 49 195 197 67 9 11 79 183 185 93 13 15 59 191 193 85 17 19 135 141 189 83 21 23 95 175 159 151 25 27 113 145 173 107 31 29 129 153 181 101 33 47 111 157 177 73 65 35 109 171 169 115 41 75 87 163 167 123 45 89 121 125 179 103 51 97 99 137 149 133 53 69 119 147 165 161 55 63 77 131 187 139 57 61 91 117 155 105 81 71 127 143 , B 17 = 259 231 53 1 131 135 137 141 257 233 51 3 123 133 139 149 251 239 49 5 117 129 147 151 269 213 55 7 105 119 153 167 263 225 47 9 113 127 145 159 267 209 57 11 89 115 169 171 271 217 43 13 121 125 143 155 243 241 45 15 103 107 161 173 261 207 59 17 83 97 181 183 265 199 61 19 85 91 175 193 223 219 81 21 67 71 185 221 215 197 109 23 27 93 195 229 245 163 111 25 35 95 177 237 227 189 99 29 31 101 165 247 255 187 69 33 73 79 157 235 253 191 63 37 65 75 201 203 249 179 77 39 41 87 205 211 ,
C 17 = 339 185 179 147 1 33 155 161 193 307 337 175 173 165 3 29 151 167 189 311 313 191 177 169 5 27 149 163 171 335 333 305 205 7 35 125 135 159 181 215 331 301 209 9 39 119 131 139 201 221 329 299 211 11 41 109 129 141 199 231 327 213 197 113 13 37 127 143 227 303 325 281 157 87 15 59 101 183 239 253 323 257 219 51 17 83 121 145 195 289 265 259 255 71 19 91 93 97 273 277 283 275 271 21 81 85 89 95 249 251 267 261 245 77 23 69 99 105 263 291 293 269 223 65 25 73 103 115 247 287 315 279 225 31 45 53 123 153 235 241 321 237 217 75 43 55 57 203 207 285 309 297 137 107 47 63 79 133 233 295 317 229 187 117 49 61 67 111 243 319 , D 17 = 101 45 1 135 167 203 97 47 3 133 163 201 93 49 5 131 169 177 99 43 7 127 165 199 89 51 9 125 157 193 79 53 11 129 161 195 81 55 13 119 159 191 83 57 15 115 151 181 95 41 17 123 149 189 75 61 19 109 153 187 77 63 21 113 137 173 69 65 23 111 139 197 73 67 25 103 141 171 87 35 27 121 155 185 71 59 29 105 147 175 85 39 31 117 143 179 91 37 33 107 145 183 ,
A 19 = 227 31 1 3 29 225 219 75 5 7 91 205 221 81 9 11 109 191 189 121 13 15 59 223 215 83 19 17 99 201 209 101 21 23 125 183 203 115 25 27 53 213 187 135 33 35 37 217 197 127 39 89 105 169 193 133 41 87 123 157 185 177 43 77 95 147 173 149 45 69 131 167 175 143 47 57 153 155 199 165 49 73 113 129 181 179 51 71 79 159 207 103 55 85 117 163 195 119 61 97 137 141 171 139 63 67 145 161 211 93 65 107 111 151 , B 19 = 287 261 59 1 147 151 153 157 303 241 61 3 137 149 159 163 277 271 55 5 135 141 165 167 301 243 57 7 133 143 155 177 299 237 63 9 101 145 175 187 275 273 49 11 129 139 169 171 291 253 51 13 123 131 173 181 285 255 53 15 111 125 183 189 297 227 67 17 93 115 195 205 289 235 65 19 87 117 191 213 293 203 91 21 69 103 207 229 251 225 109 23 45 97 219 247 265 211 107 25 31 121 223 233 295 201 85 27 99 113 127 269 283 217 79 29 35 161 197 215 279 221 75 33 77 95 179 257 267 199 105 37 43 89 231 245 249 239 81 39 41 119 185 263 281 209 71 47 73 83 193 259 ,
C 19 = 379 207 183 181 1 35 173 197 199 345 377 225 179 169 3 37 155 201 211 343 375 195 193 187 5 31 165 185 215 349 373 213 189 175 7 29 167 191 205 351 371 255 163 161 9 43 125 217 219 337 369 347 223 11 33 145 157 171 209 235 367 241 203 139 13 45 119 177 261 335 365 331 137 117 15 49 151 229 243 263 363 325 159 103 17 55 131 221 249 277 361 267 265 57 19 113 115 149 231 323 359 289 237 65 21 91 127 143 253 315 317 311 299 23 95 97 99 101 273 285 303 283 275 89 25 87 105 109 305 319 307 287 281 75 27 85 107 121 301 309 333 327 251 39 79 83 93 129 269 297 291 279 245 135 41 53 73 133 295 355 353 293 233 71 47 59 111 153 259 321 341 313 227 69 51 61 63 247 257 271 357 329 141 123 67 77 81 147 239 339 , D 19 = 113 51 1 149 189 217 111 49 3 151 187 227 107 53 5 147 179 225 103 55 7 145 177 219 97 57 9 143 181 215 109 47 11 141 183 209 93 59 13 139 175 213 91 61 15 129 185 211 89 63 17 133 171 203 83 65 19 137 165 207 85 69 21 127 163 197 77 73 23 135 153 199 81 75 25 119 155 205 87 71 27 115 157 193 79 67 29 123 161 201 95 45 31 131 169 195 105 41 33 121 173 191 99 39 35 125 167 223 101 43 37 117 159 221 ,
A 23 = 275 31 3 1 35 273 269 83 7 5 105 249 271 61 11 9 69 265 253 121 13 15 91 255 231 163 17 19 117 241 263 109 23 21 173 201 251 139 25 27 93 245 211 183 29 33 73 259 247 125 39 37 149 225 267 95 45 41 157 209 227 147 51 43 161 221 223 167 47 89 129 219 261 97 49 55 115 237 215 159 63 53 179 205 203 143 103 57 195 197 217 169 59 87 151 207 243 137 65 99 155 191 213 165 67 71 175 199 257 181 75 85 107 171 233 145 77 131 135 189 239 127 79 81 177 187 235 123 101 133 141 185 229 119 111 113 153 193 , B 23 = 195 193 175 173 1 77 291 367 191 187 181 177 3 73 295 365 227 199 169 141 5 79 289 363 225 223 145 143 7 81 287 361 253 211 157 115 9 89 279 359 255 235 133 113 11 97 271 357 249 239 129 119 13 91 277 355 217 203 165 151 15 61 307 353 205 197 171 163 17 55 313 351 241 189 179 127 19 63 305 349 265 231 137 103 21 85 283 347 247 229 139 121 23 69 299 345 257 213 155 111 25 67 301 343 315 285 109 27 83 105 273 275 323 221 149 43 29 135 261 311 303 269 99 65 31 131 281 293 337 207 159 33 71 93 263 309 339 245 117 35 49 147 243 297 341 251 107 37 95 125 183 333 233 219 209 75 39 57 319 321 259 215 161 101 41 51 317 327 335 201 153 47 45 123 237 331 329 267 87 53 59 167 185 325 ,
C 23 = 459 235 231 225 1 43 203 229 257 417 415 277 239 219 3 45 183 221 241 457 455 251 247 197 5 41 209 213 263 419 453 245 237 215 7 39 189 223 271 421 451 265 233 201 9 37 195 227 259 423 449 275 269 157 11 53 185 191 303 407 413 313 217 207 13 47 147 243 253 447 445 411 279 15 49 167 177 181 283 293 443 325 211 171 17 57 135 249 289 403 441 329 193 187 19 55 131 267 273 405 439 397 159 155 21 63 153 301 305 307 437 331 309 73 23 129 151 165 295 387 435 399 291 25 61 127 169 173 287 333 433 337 311 69 27 123 149 175 285 391 431 335 317 67 29 125 143 179 281 393 359 343 339 109 31 113 115 133 373 385 351 347 341 111 33 103 117 137 371 389 377 353 319 101 35 107 119 141 365 383 409 355 299 87 51 91 121 161 357 369 395 367 323 65 59 81 89 261 297 363 379 345 327 99 71 79 105 145 349 401 375 315 255 205 75 77 93 95 381 429 427 361 199 163 83 85 97 139 321 425 , D 23 = 133 63 1 183 229 269 135 61 3 181 227 259 129 65 5 177 223 263 123 67 7 179 217 273 137 59 9 175 211 261 117 69 11 173 221 257 113 71 13 171 225 245 109 73 15 167 219 275 115 75 17 157 207 271 125 57 19 169 213 265 131 53 21 163 215 267 105 77 23 165 203 233 107 79 25 151 201 249 99 83 27 161 187 251 103 81 29 155 191 237 101 91 31 141 189 235 93 89 33 143 199 241 97 85 35 145 195 231 95 87 37 139 193 243 127 47 39 153 205 239 111 55 41 149 209 255 121 51 43 147 197 253 119 49 45 159 185 247 ,
A 29 = 331 91 1 3 73 345 337 93 5 7 95 333 347 79 11 9 105 323 289 181 13 15 103 339 335 99 17 19 57 341 329 131 21 23 155 303 271 223 25 27 121 321 277 201 29 31 75 343 319 159 33 35 85 325 305 193 37 39 111 311 313 163 41 43 207 267 265 257 45 47 147 283 287 231 49 51 125 293 317 143 55 53 165 297 273 249 59 61 107 295 299 173 63 65 189 281 279 263 67 69 161 245 327 151 71 123 185 241 291 259 77 97 141 235 269 225 81 157 191 227 315 239 83 109 153 209 307 167 87 117 211 233 275 187 101 89 213 261 309 145 113 127 219 221 285 149 139 115 203 255 301 137 129 119 195 253 247 205 135 133 217 237 251 177 169 183 199 215 243 179 175 171 197 229 , B 29 = 245 235 229 219 1 97 367 463 255 237 227 209 3 95 369 461 257 249 215 207 5 93 371 459 289 259 205 175 7 101 363 457 263 239 225 201 9 87 377 455 243 233 231 221 11 81 383 453 271 241 223 193 13 83 381 451 311 285 179 153 15 107 357 449 293 269 195 171 17 89 375 447 327 319 145 137 19 133 331 445 333 281 183 131 21 111 353 443 279 275 189 185 23 77 387 441 317 313 151 147 25 109 355 439 323 305 159 141 27 105 359 437 265 247 217 199 29 61 403 435 291 283 181 173 31 73 391 433 339 287 177 125 33 99 365 431 297 261 203 167 35 65 399 429 343 325 139 121 37 119 345 427 341 329 135 123 39 117 347 425 303 273 191 161 41 63 401 423 393 379 113 43 91 197 251 389 413 307 149 59 45 187 301 395 349 253 211 115 47 79 385 417 337 335 129 127 49 103 361 415 419 277 163 69 51 157 315 405 409 309 143 67 53 169 299 407 411 295 165 57 55 155 321 397 421 351 85 71 75 213 267 373 ,
C 29 = 579 297 291 283 1 55 253 289 327 525 577 305 293 275 3 51 269 287 311 529 575 333 281 261 5 53 247 299 319 527 523 361 301 265 7 57 219 279 315 573 519 363 325 243 9 61 217 255 337 571 569 517 353 11 63 225 227 239 341 355 567 351 317 215 13 59 229 263 365 521 565 513 357 15 67 201 223 241 339 379 563 541 329 17 39 251 257 285 295 323 503 403 335 209 19 77 177 245 371 561 559 349 307 235 21 43 231 273 345 537 557 511 197 185 23 69 271 309 383 395 493 427 331 199 25 87 153 249 381 555 501 411 343 195 27 79 169 237 385 553 551 515 221 163 29 65 267 313 359 417 549 387 321 193 31 73 165 259 415 507 547 391 373 139 33 105 189 207 441 475 531 369 347 203 35 49 211 233 377 545 543 477 393 37 103 133 187 213 367 447 539 469 401 41 111 159 161 179 419 421 461 443 389 157 45 119 137 191 423 535 483 463 457 47 141 143 145 151 433 437 481 467 431 71 125 129 147 149 449 451 465 445 425 115 75 131 135 167 453 489 459 435 429 127 81 113 123 181 455 497 495 405 375 175 83 93 121 173 471 509 499 439 413 99 85 97 107 277 399 485 479 473 397 101 89 95 171 183 407 505 533 409 303 205 91 109 117 155 487 491 , D 29 = 169 79 1 231 289 333 171 77 3 227 287 341 161 81 5 229 285 335 159 83 7 225 281 329 173 71 9 223 283 339 157 85 11 213 279 347 167 75 13 219 271 337 163 73 15 221 275 345 145 87 17 217 273 325 147 89 19 215 261 313 139 91 21 207 277 323 137 93 23 205 267 343 141 95 25 195 269 311 125 97 27 211 263 327 129 99 29 209 247 317 131 101 31 201 249 301 165 67 33 197 265 319 135 103 35 177 259 307 127 115 37 183 239 291 117 107 39 203 241 295 119 111 41 187 243 299 133 105 43 179 237 293 121 109 45 181 235 315 123 113 47 175 233 297 155 63 49 193 257 303 153 65 51 185 253 331 149 69 53 189 245 305 151 59 55 191 255 321 143 61 57 199 251 309 ,
A 31 = 365 97 1 3 111 349 333 141 5 7 91 371 367 125 11 9 201 293 369 89 13 15 109 347 363 99 17 19 65 361 359 115 23 21 137 339 303 215 25 27 113 353 341 177 29 31 123 335 343 155 33 35 73 357 313 209 37 39 95 351 337 165 41 43 189 311 329 213 45 47 131 319 331 211 49 51 121 321 325 187 53 55 243 267 323 227 57 59 117 317 281 277 61 63 119 315 327 167 75 67 197 305 285 233 69 77 239 271 355 135 71 105 149 307 345 241 79 101 183 223 283 249 81 175 191 247 299 287 83 93 153 257 275 253 85 159 199 255 297 289 87 103 133 263 291 179 143 107 245 261 301 185 129 127 237 251 269 225 139 195 203 235 309 161 145 163 173 279 265 217 147 151 219 259 295 171 157 169 181 273 231 207 205 193 221 229 , B 31 = 281 253 243 215 1 107 389 495 267 251 245 229 3 101 395 493 271 263 233 225 5 99 397 491 335 275 221 161 7 123 373 489 329 289 207 167 9 119 377 487 287 265 231 209 11 93 403 485 305 259 237 191 13 95 401 483 269 255 241 227 15 83 413 481 257 249 247 239 17 79 417 479 347 299 197 149 19 117 379 477 311 283 213 185 21 89 407 475 333 325 171 163 23 113 383 473 323 291 205 173 29 85 411 467 353 349 147 143 31 131 365 465 367 293 203 129 35 105 391 461 317 307 189 179 37 77 419 459 279 261 235 217 41 53 443 455 427 385 155 25 127 135 361 369 421 393 151 27 111 153 357 371 471 351 137 33 139 145 345 363 327 313 193 159 39 81 423 449 457 309 183 43 115 121 341 415 469 303 175 45 103 157 301 431 285 273 223 211 47 49 445 451 315 295 201 181 51 57 437 447 435 337 165 55 87 141 339 425 441 343 133 75 59 177 375 381 463 359 109 61 97 187 321 387 433 405 91 63 65 277 319 331 439 355 125 73 67 199 297 429 453 399 71 69 169 195 219 409 ,
C 31 = 619 317 311 303 1 57 285 309 335 563 617 355 291 287 3 59 265 329 333 561 615 325 315 295 5 53 281 305 339 567 565 361 331 293 7 55 259 289 327 613 555 389 343 263 9 65 231 277 357 611 609 321 319 301 11 51 251 299 369 569 559 385 349 257 13 61 235 271 363 607 557 399 341 253 15 63 221 279 367 605 603 553 377 17 67 207 243 297 323 413 601 409 347 193 19 85 211 273 427 535 599 365 337 249 21 47 255 283 371 573 597 551 379 23 69 215 233 241 387 405 595 549 381 25 71 203 237 239 383 417 547 425 359 219 27 73 195 261 401 593 591 473 391 95 29 147 229 267 353 525 589 407 375 179 31 83 213 245 441 537 587 431 345 187 33 81 189 275 433 539 585 527 247 191 35 93 171 373 429 449 583 519 411 37 101 183 185 209 435 437 581 533 397 39 87 161 223 225 395 459 515 487 351 197 41 105 133 269 423 579 491 481 403 175 43 129 139 217 445 577 575 513 313 149 45 107 159 307 461 471 507 505 489 49 151 153 155 163 451 477 509 497 469 75 135 143 145 165 479 483 495 475 455 125 77 137 157 169 499 511 545 447 439 119 79 113 167 205 457 529 531 467 463 89 109 121 173 181 443 523 503 453 393 201 91 99 103 199 517 541 543 465 415 127 97 115 117 227 493 501 521 485 421 123 111 131 141 177 419 571 , D 31 = 183 83 1 247 309 355 179 85 3 243 307 361 181 81 5 245 303 367 185 79 7 237 305 369 169 87 9 241 301 353 167 89 11 239 291 363 165 91 13 229 297 371 177 77 15 235 299 359 161 93 17 225 293 349 153 95 19 233 283 357 149 97 21 231 281 365 147 99 23 223 295 331 175 75 25 227 287 339 145 101 27 221 285 323 141 103 29 213 289 337 151 105 31 199 273 347 133 107 33 215 275 351 171 73 35 219 277 341 135 109 37 207 269 335 143 111 39 197 263 319 139 123 41 191 249 317 131 121 43 189 257 345 127 119 45 203 251 321 129 113 47 193 265 333 137 115 49 187 255 315 173 67 51 209 261 325 125 117 53 195 253 313 155 69 55 205 279 343 157 71 57 211 259 327 159 63 59 217 271 311 163 65 61 201 267 329 ,
A 37 = 443 43 1 3 41 441 435 97 5 7 99 431 429 125 9 11 131 421 439 93 15 13 109 425 411 179 17 19 137 417 437 141 21 23 197 379 415 159 25 27 89 433 389 217 29 31 123 423 419 185 33 35 279 323 381 229 37 39 107 427 403 189 47 45 209 385 407 207 49 51 101 413 399 203 55 53 249 355 375 235 59 57 259 353 373 289 61 63 171 367 347 319 65 67 165 369 409 257 69 71 183 343 341 277 73 75 291 325 405 237 77 79 95 391 397 201 81 83 247 349 333 293 85 117 287 307 335 301 87 181 225 317 387 313 91 135 175 299 395 195 103 153 169 371 363 191 157 105 245 361 383 205 111 121 213 365 345 281 113 215 261 263 359 251 115 147 273 305 351 255 119 155 233 337 377 211 129 127 275 315 401 177 133 173 199 339 393 163 161 139 267 311 329 219 193 143 271 327 357 223 151 145 265 321 331 243 167 149 283 309 303 269 187 221 241 297 295 239 231 227 253 285 , B 37 = 319 301 291 273 1 125 467 591 311 307 285 281 3 121 471 589 323 305 287 269 5 119 473 587 329 309 283 263 7 117 475 585 327 297 295 265 9 113 479 583 343 321 271 249 11 115 477 581 375 347 245 217 13 129 463 579 333 299 293 259 15 105 487 577 337 303 289 255 17 103 489 575 325 317 275 267 19 99 493 573 349 315 277 243 21 101 491 571 345 313 279 247 23 97 495 569 379 335 257 213 25 109 483 567 341 331 261 251 27 93 499 565 377 353 239 215 29 107 485 563 389 357 235 203 31 111 481 561 361 351 241 231 33 95 497 559 445 339 253 147 35 139 453 557 423 397 195 169 37 143 449 555 417 383 209 175 39 127 465 553 427 399 193 165 41 141 451 551 501 469 171 43 145 161 431 447 519 457 163 45 155 159 433 437 521 443 173 47 137 167 419 461 415 411 205 153 49 131 455 549 545 407 181 51 91 223 429 441 541 371 219 53 135 151 381 517 539 405 185 55 123 183 373 505 523 413 191 57 81 229 367 507 543 425 157 59 133 177 435 439 513 403 201 67 61 227 387 509 529 385 187 83 63 237 359 525 527 395 197 65 71 233 365 515 535 391 189 69 89 199 393 503 537 363 211 73 75 221 355 533 531 369 207 77 85 179 409 511 547 401 149 87 79 225 421 459 ,
C 37 = 739 375 371 365 1 67 357 369 383 673 737 379 373 361 3 65 351 367 389 675 669 421 417 343 5 71 319 323 397 735 733 381 377 359 7 69 295 363 445 671 731 453 335 331 9 73 287 405 409 667 729 677 433 11 63 307 341 355 385 399 727 403 387 333 13 57 337 353 407 683 661 463 429 297 15 79 277 311 443 725 723 481 345 301 17 77 259 395 439 663 721 419 393 317 19 55 321 347 423 685 719 447 391 293 21 85 233 349 507 655 717 649 461 23 91 265 267 279 473 475 715 459 449 227 25 97 281 291 513 643 713 647 261 229 27 93 325 415 479 511 711 477 427 235 29 89 263 313 505 651 687 457 401 305 31 53 283 339 435 709 707 625 329 189 33 115 247 411 493 551 705 637 299 209 35 103 253 441 487 531 703 465 451 231 37 83 275 289 509 657 701 613 497 39 127 169 243 315 425 571 699 495 469 187 41 123 245 271 553 617 697 503 413 237 43 87 223 327 517 653 695 577 533 45 163 179 207 241 499 561 693 595 515 47 145 175 225 251 489 565 593 583 455 219 49 147 157 285 521 691 689 587 523 51 153 195 211 217 529 545 569 541 491 249 59 151 171 199 589 681 679 483 431 257 61 125 133 309 607 615 665 537 467 181 75 109 203 273 559 631 605 591 573 81 161 173 185 193 557 581 579 563 543 165 95 159 183 191 603 619 627 585 539 99 137 155 201 205 555 597 575 535 501 239 101 105 117 269 599 659 645 567 527 111 107 141 197 255 549 601 639 519 471 221 113 135 139 213 621 629 641 623 437 149 119 129 143 303 547 609 633 611 485 121 131 167 177 215 525 635 , D 37 = 221 99 1 293 365 429 217 97 3 295 369 439 219 101 5 279 367 433 211 103 7 287 363 405 215 95 9 291 359 431 201 105 11 283 361 443 197 107 13 285 355 417 187 109 15 289 357 425 213 93 17 281 353 421 191 111 19 277 351 397 185 113 21 273 347 437 189 115 23 271 339 391 177 117 25 269 349 415 205 91 27 275 345 427 181 119 29 255 337 435 171 121 31 259 341 441 169 123 33 263 343 383 165 125 35 265 333 389 209 87 37 267 331 401 159 127 39 257 335 403 155 129 41 261 329 395 163 131 43 245 327 387 167 133 45 231 319 419 179 135 47 225 307 379 157 145 49 229 309 399 173 137 51 223 305 381 149 143 53 233 315 393 151 147 55 235 303 371 161 141 57 227 299 377 153 139 59 237 301 373 195 83 61 253 311 411 193 81 63 247 325 407 207 75 65 241 317 413 199 77 67 249 323 375 203 79 69 251 297 385 175 89 71 243 321 409 183 85 73 239 313 423 .
With the aid of a computer, for p { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } , one can prove that A p is an odd-normal BRMR ( p , 6 ) , B p is an odd-normal balanced BRMR ( p , 8 ) , and C p is an odd-normal BRMR ( p , 10 ) . Let k = 24 p and D p = ( d i , j ( p ) ) and we define a p × 6 matrix E p = ( e i , j ( p ) ) by
e i , j ( p ) = s i g n ( d i , 5 j ( p ) ) ( k | d i , 5 j ( p ) | ) , i I p , j I 6 ,
where sign ( d i , 5 j ( p ) ) = | d i , 5 j ( p ) | / d i , 5 j ( p ) . Let F p = ( D p E p ) . Then, one can prove that F p is an odd-normal BRMR ( p , 12 ) for p { 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } . This completes the proof. □

References

  1. Chavan, V.C.; Mikkili, S. Hardware implementation of sensor-less matrix shifting reconfiguration method to extract maximum power under various shading conditions. CPSS Trans. Power Electron. Appl. 2023, 8, 384–396. [Google Scholar] [CrossRef]
  2. Rajesh, P.; Saji, K.S. Total Cross Tied-Inverted Triangle View Configuration for PV System Power Enhancement. Intell. Autom. Soft Comput. 2022, 33, 1531–1545. [Google Scholar] [CrossRef]
  3. Etarhouni, M.; Chong, B.; Zhang, L. A novel square algorithm for maximising the output power from a partially shaded photovoltaic array system. Optik 2022, 257, 168870. [Google Scholar] [CrossRef]
  4. Pachauri, R.K.; Thanikanti, S.B.; Bai, J.; Yadav, V.K.; Aljafari, B.; Ghosh, S.; Alhelou, H.H. Ancient Chinese magic square-based PV array reconfiguration methodology to reduce power loss under partial shading conditions. Energ. Convers. Manag. 2022, 253, 115148. [Google Scholar] [CrossRef]
  5. Kravchenko, V.F.; Lutsenko, V.I.; Lutsenko, I.V.; Popov, I.V.; Luo, Y.; Mazurenko, A.V. Nonequidistant two-dimensional antenna arrays based on magic squares. J. Meas. Sci. Instrum. 2017, 8, 244–253. [Google Scholar] [CrossRef]
  6. Kareem, S.M.; Rahma, A.M.S. An innovative method for enhancing advanced encryption standard algorithm based on magic square of order 6. Bull. Electr. Eng. Inform. 2023, 12, 1684–1692. [Google Scholar] [CrossRef]
  7. Hassan, M.U.; Alzayed, A.; Al-Awady, A.A.; Iqbal, N.; Akram, M.; Ikram, A. A Novel RGB Image Obfuscation Technique Using Dynamically Generated All Order-4 Magic Squares. IEEE Access 2023, 11, 46382–46398. [Google Scholar] [CrossRef]
  8. Wang, J.; Liu, L. A novel chaos-based image encryption using magic square scrambling and octree diffusing. Mathematics 2022, 10, 457. [Google Scholar] [CrossRef]
  9. Hyodo, Y.; Kitabayashi, T. Magic square and Dirac flavor neutrino mass matrix. Int. J. Mod. Phys. A 2020, 35, 2050183. [Google Scholar] [CrossRef]
  10. Peng, C.-C.; Tsai, C.-J.; Chang, T.-Y.; Yeh, J.-Y.; Lee, M.-C. Novel heterogeneous grouping method based on magic square. Inform. Sci. 2020, 517, 340–360. [Google Scholar] [CrossRef]
  11. Sim, K.A.; Wong, K.B. Magic square and arrangement of consecutive integers that avoids k-term arithmetic progressions. Mathematics 2021, 9, 2259. [Google Scholar] [CrossRef]
  12. Nordgren, R.P. On properties of special magic square matrices. Linear Algebra Appl. 2012, 437, 2009–2025. [Google Scholar] [CrossRef]
  13. Beck, M.; Zaslavsky, T. An Enumerative Geometry for Magic and Magilatin Labellings. Ann. Comb. 2006, 10, 395–413. [Google Scholar] [CrossRef]
  14. Trenkler, M. Super-magic complete k-partite hypergraphs. Graph. Combinator. 2001, 17, 171–175. [Google Scholar] [CrossRef]
  15. Marr, A. Sparse Semi-Magic Squares and Magic Labelings of Directed Graphs. Electron. Notes Discret. Math. 2015, 48, 3–10. [Google Scholar] [CrossRef]
  16. Gray, I.D.; MacDougall, J.A. Sparse anti-magic squares and vertex-magic labelings of bipartite graphs. Discrete Math. 2006, 306, 2878–2892. [Google Scholar] [CrossRef]
  17. Stanley, R.P. Magic Labelings of Graphs, Symmetric Magic Squares, Systems of Parameters, and Cohen-Macaulay Rings. Duke Math. J. 1976, 43, 511–531. [Google Scholar] [CrossRef]
  18. Krishnappa, H.K.; Kothapalli, K.; Venkaiah, V.C. Vertex Magic Total Labelings of Complete Graphs. AKCE Int. J. Graphs Co. 2009, 6, 143–154. [Google Scholar]
  19. Ahmed, M.M. Polytopes of Magic Labelings of Graphs and the Faces of the Birkhoff Polytope. Ann. Comb. 2008, 12, 241–269. [Google Scholar] [CrossRef]
  20. Trenkler, M. A construction of magic cubes. Math. Gaz. 2000, 84, 36–41. [Google Scholar] [CrossRef]
  21. Trenkler, M. Magic p-dimensional cubes. Acta Arith. 2001, 96, 361–364. [Google Scholar] [CrossRef]
  22. Derksen, H.; Eggermont, C.; Van den Essen, A. Multimagic squares. Am. Math. Mon. 2007, 114, 703–713. [Google Scholar] [CrossRef]
  23. Chen, J.; Wu, J.; Wu, D. The existence of irrational most perfect magic squares. J. Combin. Des. 2023, 31, 23–40. [Google Scholar] [CrossRef]
  24. Liao, F.; Xie, H. On the Construction of Pandiagonal Magic Cubes. Mathematics 2023, 11, 1185. [Google Scholar] [CrossRef]
  25. Hu, C.; Meng, J.; Pan, F.; Su, M.; Xiong, S. On the Existence of a Normal Trimagic Square of Order 16n. J. Math. 2023, 2023, 8377200. [Google Scholar] [CrossRef]
  26. Li, W.; Pan, F.; Chen, G. Construction of normal bimagic squares of order 2u. Acta Math. Appl. Sin.-E. 2020, 36, 771–789. [Google Scholar] [CrossRef]
  27. Rani, N.; Mishra, V. Behavior of powers of odd ordered special circulant magic squares. Intern. J. Math. Educ. Sci. Technol. 2021, 53, 1044–1062. [Google Scholar] [CrossRef]
  28. Dhandapani, P.B.; Leiva, V.; Martin-Barreiro, C. Construction of a repetitive magic square with Ramanujan’s number as its product. Heliyon 2022, 9, e12046. [Google Scholar] [CrossRef]
  29. Pan, F.; Li, W.; Chen, G.; Xin, B. A complete solution to the existence of normal bimagic squares of even order. Discrete Math. 2021, 344, 1823–1831. [Google Scholar] [CrossRef]
  30. Zhang, Y.; Chen, K.; Lei, J. Large sets of orthogonal arrays and multimagic squares. J. Combin. Des. 2013, 21, 390–403. [Google Scholar] [CrossRef]
  31. Li, W.; Zhang, Y.; Chen, K. A generalization of product construction of multimagic squares. Adv. Math. 2017, 46, 828–838. [Google Scholar] [CrossRef]
  32. Abel, R.J.; Colbourn, C.J.; Dinitz, J.H. Mutually orthogonal Latin squares. In The CRC Handbook of Combinatorial Designs; Colbourn, C.J., Dinitz, J.H., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 160–194. [Google Scholar]
  33. Li, W.; Wu, D.; Pan, F. A construction for doubly pandiagonal magic squares. Discrete Math. 2013, 312, 479–485. [Google Scholar] [CrossRef]
  34. Zhang, Y.; Lei, J. Multimagic rectangles based on large sets of orthogonal arrays. Discrete Math. 2013, 313, 1823–1831. [Google Scholar] [CrossRef]
  35. Chen, K.; Li, W. Existence of normal bimagic squares. Discrete Math. 2012, 312, 3077–3086. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hu, C.; Pan, F. New Infinite Classes for Normal Trimagic Squares of Even Orders Using Row–Square Magic Rectangles. Mathematics 2024, 12, 1194. https://doi.org/10.3390/math12081194

AMA Style

Hu C, Pan F. New Infinite Classes for Normal Trimagic Squares of Even Orders Using Row–Square Magic Rectangles. Mathematics. 2024; 12(8):1194. https://doi.org/10.3390/math12081194

Chicago/Turabian Style

Hu, Can, and Fengchu Pan. 2024. "New Infinite Classes for Normal Trimagic Squares of Even Orders Using Row–Square Magic Rectangles" Mathematics 12, no. 8: 1194. https://doi.org/10.3390/math12081194

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop