The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs
Abstract
1. Introduction
- (1) If , then
- (2) Then
- (3) If , then
- (4) Then
- (1) If
- (2) If
- (3) If
- (4) If
- (1) If
- (2) If
- (3) If
- (4) If
2. Lemmas
3. Proofs
3.1. Proof of Theorem 1
3.2. Proof of Theorem 2
3.3. Proof of Theorem 3
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R. The First Zagreb Index and Some Hamiltonian Properties of Graphs. Mathematics 2024, 12, 3902. [Google Scholar] [CrossRef]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals, total π-electron energy of alternant hydroncarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Gutman, I.; Ruščić, B.; Trinajstić, N.; Wilcox, C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Borovićanin, B.; Das, K.; Furtula, B.; Gutman, I. Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 2017, 78, 17–100. [Google Scholar]
- Mohar, B. Laplace eigenvalues of graphs–a survey. Discret. Math. 1992, 109, 171–183. [Google Scholar] [CrossRef]
- Patra, K.; Sahoo, B. Bounds for the Laplacian spectral radius of graphs. Electron. J. Graph Theory Appl. 2017, 5, 276–303. [Google Scholar] [CrossRef]
- Zhang, X. The Laplacian eigenvalues of graphs: A survey. arXiv 2025, arXiv:1111.2897. [Google Scholar]
- Pólya, G.; Szegő, G. Aufgaben und Lehrsätze aus der Analysis; Springer: Berlin, Germany, 1925; Volume I. [Google Scholar]
- Diaz, J.; Metcalf, F. Complementary inequalities I: Inequalities complementary to Cauchy’s inequalities for sums of real numbers. J. Math. Anal. Appl. 1964, 9, 59–74. [Google Scholar] [CrossRef]
- Dragomir, S.S. A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequalities Pure Appl. Math. 2003, 4, 63. [Google Scholar]
- Shisha, O.; Mond, B. Bounds on differences of means. In Inequalities; Academic Press Inc.: New York, NY, USA, 1967; pp. 293–308. [Google Scholar]
- Lu, M.; Liu, H.; Tian, F. Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 2005, 402, 390–396. [Google Scholar] [CrossRef]
- Godsil, C.; Royle, G. Algebraic Graph Theory; Springer: New York, NY, USA, 2001. [Google Scholar]
- Chvátal, C.; Erdös, P. A note on Hamiltonian circuits. Discret. Math. 1972, 2, 111–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R. The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs. Mathematics 2025, 13, 2897. https://doi.org/10.3390/math13172897
Li R. The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs. Mathematics. 2025; 13(17):2897. https://doi.org/10.3390/math13172897
Chicago/Turabian StyleLi, Rao. 2025. "The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs" Mathematics 13, no. 17: 2897. https://doi.org/10.3390/math13172897
APA StyleLi, R. (2025). The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs. Mathematics, 13(17), 2897. https://doi.org/10.3390/math13172897