Synchronous Stability in Multiplex Network Subject to Higher-Order Intralayer Interactions
Abstract
1. Introduction
2. Preliminaries and Hypergraph
2.1. Some Definitions
2.2. The Mathematical Model
2.3. Stability Condition for Multiplex Hypergraph
3. Numerical Simulations
3.1. Synchronization on Three-Layer Hypergraph of Neuron Systems
3.2. Synchronization on Three-Layer Hypergraph of Rikitake Two-Disk System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Srinivasan, A.; Arun, S.; Rajagopal, K. Complex network dynamics of a memristor neuron model with piecewise linear activation function. Eur. Phys. J. Spec. Top. 2022, 231, 4089–4096. [Google Scholar] [CrossRef]
- He, W.; Chen, G.; Han, Q.L.; Du, W.; Cao, J.; Qian, F. Multiagent systems on multilayer networks: Synchronization analysis and network design. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1655–1667. [Google Scholar] [CrossRef]
- Lynn, C.W.; Bassett, D.S. The physics of brain network structure, function and control. Nat. Rev. Phys. 2019, 1, 318–332. [Google Scholar] [CrossRef]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1. [Google Scholar] [CrossRef]
- Matamalas, J.T.; Gómez, S.; Arenas, A. Abrupt phase transition of epidemic spreading in simplicial complexes. Phys. Rev. Res. 2019, 2, 012049. [Google Scholar] [CrossRef]
- Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P.J.; Vaccarino, F. Homological scaffolds of brain functional networks. J. R. Soc. Interface 2014, 11, 20140873. [Google Scholar] [CrossRef]
- Skardal, P.S.; Ott, E.; Restrepo, J.G. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. Phys. Rev. E 2011, 84, 036208. [Google Scholar] [CrossRef]
- Sabhahit, N.G.; Khurd, A.S.; Jalan, S. Prolonged hysteresis in the Kuramoto model with inertia and higher-order interactions. Phys. Rev. E 2024, 109, 024212. [Google Scholar] [CrossRef]
- Bayani, A.; Jafari, S.; Azarnoush, H. Explosive synchronization: From synthetic to real-world networks. Chin. Phys. B 2022, 31, 020504. [Google Scholar] [CrossRef]
- Skardal, P.S.; Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 2020, 3, 218. [Google Scholar] [CrossRef]
- Tang, Q.; Qu, S.; Zheng, W.; Tu, Z. Fast finite-time quantized control of multi-layer networks and its applications in secure communication. Neural Netw. 2025, 185, 107225. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.; Lu, A.; Sokolov, I.M. Synchronization transitions in Kuramoto networks with higher-mode interaction. Chaos 2023, 33, 073138. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Szmoski, R.M.; Pereira, R.F. Chaotic, informational and synchronous behavior of multiplex networks. Sci. Rep. 2016, 6, 22617. [Google Scholar] [CrossRef]
- Hu, X.H.; Wu, Y.; Ding, Q.M.; Huang, W.F.; Ye, Z.; Jia, Y.; Yang, L.J. Inter-layer, intra-layer and complete synchronization in multiplex neuron networks. Nonlinear Dyn. 2025, 113, 21813–21832. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Rakshit, S.; Buldu, J.M.; Ghosh, D.; Hens, C. Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Phys. Rev. E 2021, 103, 032310. [Google Scholar] [CrossRef]
- Pilosof, S.; Porter, M.A.; Pascual, M.; Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 2017, 1, 0101. [Google Scholar] [CrossRef]
- Parastesh, F.; Mehrabbeik, M.; Rajagopal, K. Synchronization in Hindmarsh-Rose neurons subject to higher-order interactions. Chaos 2022, 32, 013125. [Google Scholar] [CrossRef]
- Anwar, M.S.; Ghosh, D. Stability of synchronization in simplicial complexes with multiple interaction layers. Phys. Rev. E 2022, 106, 034314. [Google Scholar] [CrossRef]
- Wang, Z.; Alsaadi, F.E.; Pham, V.-T. Synchronization in a multilayer neuronal network: Effect of time delays. Eur. Phys. J. Spec. Top. 2019, 228, 2391–2403. [Google Scholar] [CrossRef]
- Liu, H.R.; Zhou, J.; Li, B.; Huang, M.; Lu, J.-A.; Shi, D. Synchronization on higher-order network. Lett. J. Explor. Front. Phyisics 2024, 145, 61001. [Google Scholar] [CrossRef]
- Jost, J.; Mulas, R. Hypergraph Laplace operators for chemical reaction networks. Adv. Math. 2019, 351, 870. [Google Scholar] [CrossRef]
- Sorrentino, F. Synchronization of hypernetworks of coupled dynamical systems. New J. Phys. 2012, 14, 033035. [Google Scholar] [CrossRef]
- Mulas, R.; Kuehn, C.; Jost, J. Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. Phys. Rev. E 2020, 101, 062313. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.S.; Ghosh, D. Intralayer and interlayer synchronization in multiplex network with higher-order interactions. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 033125. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, D.D.; Zhong, M.; Peng, H.; Wang, W. Modeling and analysis of cascading failures in multilayer higher-order networks. Reliab. Eng. Syst. Saf. 2025, 253, 110497. [Google Scholar] [CrossRef]
- Lai, Y.H.; Liu, Y.; Zheng, K.X. Robustness of interdependent higher-order networks. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 073121. [Google Scholar] [CrossRef]
- Sun, H.; Bianconi, G. Higher-order percolation processes on multiplex hypergraphs. Phys. Rev. E 2021, 104, 034306. [Google Scholar] [CrossRef]
- Tong, L.K.; Wu, X.Q.; Lv, J.H.; Lu, J.-A.; D’Souza, R.M. Master stability functions for multiplex networks. Phys. Rev. E 2019, 99, 012304. [Google Scholar] [CrossRef]
- Sizemore, A.E.; Giusti, C.; Kahn, A.; Vettel, J.M.; Betzel, R.F.; Bassett, D.S. Cliques and cavities in the human connectome. J. Comput. Neurosci. 2018, 44, 115–145. [Google Scholar] [CrossRef]
- Santans, L.; Silva, R.M.; Albuquerque, H.A.; Manchein, C. Transient dynamics and multistability in two electrically interacting FitzHugh-Nagumo neurons. Chaos 2021, 31, 053107. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Pham, V.T.; Volos, C.K. A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1575–1592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Yang, L. Synchronous Stability in Multiplex Network Subject to Higher-Order Intralayer Interactions. Mathematics 2025, 13, 2901. https://doi.org/10.3390/math13172901
Feng J, Yang L. Synchronous Stability in Multiplex Network Subject to Higher-Order Intralayer Interactions. Mathematics. 2025; 13(17):2901. https://doi.org/10.3390/math13172901
Chicago/Turabian StyleFeng, Junqing, and Lixin Yang. 2025. "Synchronous Stability in Multiplex Network Subject to Higher-Order Intralayer Interactions" Mathematics 13, no. 17: 2901. https://doi.org/10.3390/math13172901
APA StyleFeng, J., & Yang, L. (2025). Synchronous Stability in Multiplex Network Subject to Higher-Order Intralayer Interactions. Mathematics, 13(17), 2901. https://doi.org/10.3390/math13172901