Optimizing Mine Ventilation Systems: An Advanced Mixed-Integer Linear Programming Model
Abstract
1. Introduction
2. Multi-Objective Nonlinear Optimization Model
2.1. Basic Mathematial Framework
- (1)
- Identify each objective and constraint of the optimization model based on the specific requirements of the ventilation system optimization problem.
- (2)
- Convert some hard constraints into objective constraints based on the actual requirements of the optimization problem.
- (3)
- Establish priority factors and weighting coefficients for each objective according to their relative importance in the optimization problem.
- (4)
- Define the final objective function, constraints, and range of decision variables for the optimization model.
- (5)
- Solve the optimization model using appropriate methods to develop an optimal scheme for the ventilation system.
2.2. Nonlinear Optimization Model
- (1)
- Theoretical Assumptions
- (2)
- Fundamental Laws of Airflow
- (3)
- Nonlinear mathematical model
3. Mixed-Integer Linear Programming Model
3.1. Linearization Strategy of Nonlinear Model
3.2. Mathematical Modeling
3.2.1. Optimization Objectives
- (1)
- Minimum ventilation energy consumption objective
- (2)
- Optimal regulation position objective
- (3)
- Optimal regulation way objective
- (4)
- Minimum number of regulations objective
3.2.2. Constraints
- (1)
- Air quantity balance constraints
- (2)
- Air pressure balance constraints
- (3)
- Regulation position constraints
- (4)
- Regulation way constraints
- (5)
- Regulation number constraints
- (6)
- Fan operating condition constraints
3.3. Mathematical Model Solution
4. Case Studies
4.1. A Simplie Case
4.1.1. Ventilation Network
4.1.2. Optimization Results
4.2. A Complex Case
4.2.1. Ventilation Network
4.2.2. Optimization Results
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Yin, H. The intelligent theory and technology of mine ventilation. J. China Coal Soc. 2020, 45, 2236–2247. [Google Scholar] [CrossRef]
- Liu, J. Overview on Key Scientific and Technical Issues of Mine Intelligent Ventilation. Saf. Coal Mines 2020, 51, 108–111, 117. [Google Scholar] [CrossRef]
- Zhou, F.; Wei, L.; Xia, T.; Wang, K.; Wu, X.; Wang, Y. Principle, key technology and preliminary realization of mine intelligent ventilation. J. China Coal Soc. 2020, 45, 2225–2235. [Google Scholar] [CrossRef]
- Kanam, O.H.; Ahmed, M.O. A review on underground mine ventilation system. J. Mines Met. Fuels 2021, 69, 62–70. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Zhou, Q.; Huang, D. Machine learning algorithm selection for windage alteration fault diagnosis of mine ventilation system. Adv. Eng. Inform. 2022, 53, 101666. [Google Scholar] [CrossRef]
- Prince; Yoon, B.; Hati, A.S.; Kumar, P.; Chakrabarti, P. Prediction of Energy Consumption and Airflow of a Ventilation System: A SAGA-Optimised Back-Propagation Neural Network-based Approach. Expert Syst. Appl. 2025, 297, 129293. [Google Scholar] [CrossRef]
- Lowndes, I.S.; Fogarty, T.; Yang, Z.Y. The application of genetic algorithms to optimise the performance of a mine ventilation network: The influence of coding method and population size. Soft Comput. 2005, 9, 493–506. [Google Scholar] [CrossRef]
- Xie, X.P.; Luo, C.H.; Yu, Y.P. Optimization of Mine Ventilation System Based on Genetic Algorithms. Prog. Saf. Sci. Technol. 2008, 7, 1546–1550. [Google Scholar]
- Kozyrev, S.A.; Osintseva, A.V. Optimizing arrangement of air distribution controllers in mine ventilation system. J. Min. Sci. 2012, 48, 896–903. [Google Scholar] [CrossRef]
- Gao, K.; Deng, L.; Liu, J.; Wen, L.; Wong, D.; Liu, Z. Study on Mine Ventilation Resistance Coefficient Inversion Based on Genetic Algorithm. Arch. Min. Sci. 2018, 63, 813–826. [Google Scholar] [CrossRef]
- Gu, P.; Xiu, C.B.; Cheng, Y.; Luo, J.; Li, Y. Adaptive Ant Colony Optimization Algorithm. In Proceedings of the 2014 International Conference on Mechatronics and Control (ICMC), Jinzhou, China, 3–5 July 2014; pp. 95–98. [Google Scholar] [CrossRef]
- Gao, W. Optimization of mine ventilation system based on ant colony algorithm. Prog. Saf. Sci. Technol. 2004, 4, 922–926. [Google Scholar]
- Gao, W. Optimization of Mine Ventilation System Based on Bionics Algorithm. Procedia Eng. 2011, 26, 1614–1619. [Google Scholar] [CrossRef]
- Gao, W.; Soc, I.C. Study on immunized Ant Colony Optimization. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; pp. 792–796. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Y.X.; Zheng, L.P. Design and Simulation of Simulated Annealing Algorithm with Harmony Search. In Advances in Swarm Intelligence, Part II, Proceedings of the First International Conference, ICSI 2010, Beijing, China, 12–15 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 454–460. [Google Scholar] [CrossRef]
- Xiang, Y.; Gong, X.G. Efficiency of generalized simulated annealing. Phys. Rev. E 2000, 62, 4473–4476. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, F.J.; Garcia-Martinez, C.; Lozano, M. A GA-Based Multiple Simulated Annealing. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Stepanenko, S.; Engels, B. Gradient tabu search. J. Comput. Chem. 2007, 28, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.H.; He, J.; Zheng, H.; Sun, R.H. Research on the HPACA Algorithm to Solve Alternative Covering Location Model for Methane Sensors. Procedia Comput. Sci. 2018, 139, 464–472. [Google Scholar] [CrossRef]
- Drezner, Z.; Marcoulides, G.A.; Salhi, S. Tabu search model selection in multiple regression analysis. Commun. Stat.-Simul. Comput. 1999, 28, 349–367. [Google Scholar] [CrossRef]
- Sui, J.; Yang, L.; Zhu, Z.; Hua, Z. Mine Ventilation Optimization Design Based on Improved Harmony Search. In Proceedings of the 2010 WASE International Conference on Information Engineering, Beidai, China, 14–15 August 2010; pp. 67–70. [Google Scholar] [CrossRef]
- Ge, H. Optimization and Control of Mine Ventilation System Based on PSO Algorithm. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2020. [Google Scholar]
- Wen, L.; Zhong, D.; Bi, L.; Wang, L.; Liu, Y. Optimization Method of Mine Ventilation Network Regulation Based on Mixed-Integer Nonlinear Programming. Mathematics 2024, 12, 2632. [Google Scholar] [CrossRef]
- Wen, L.; Wang, J.; Wang, L.; Zhong, D.; Liu, Y. Optimization of airflow distribution in mine ventilation networks considering ventilation energy consumption and number of regulators. Eng. Optim. 2025, 1–22. [Google Scholar] [CrossRef]
- Acuña, E.I.; Lowndes, I. A Review of Primary Mine Ventilation System Optimization. Interfaces 2014, 44, 163–175. [Google Scholar] [CrossRef]
- Hu, Y.; Koroleva, O.I.; Krstić, M. Nonlinear control of mine ventilation networks. Syst. Control Lett. 2003, 49, 239–254. [Google Scholar] [CrossRef]
- Ueng, T.H.; Wang, Y.J. Analysis of mine ventilation networks using nonlinear programming techniques. Geotech. Geol. Eng. 1984, 2, 245–252. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H. Solution of Problems Relevant to Optimal Control of Mine Ventilation Network by Non-linear Programming Technology. J. China Coal Soc. 1995, 20, 14–20. [Google Scholar]
- Zhong, D.; Wen, L.; Wang, L. Two-step Optimization Method for Airflow Control Based on Mixed Integer Programming. Gold Sci. Technol. 2024, 32, 356–365. [Google Scholar] [CrossRef]
- Wang, J.; Jia, M.; Bin, L.; Wang, L.; Zhong, D. Regulation and Optimization of Air Quantity in a Mine Ventilation Network with Multiple Fans. Arch. Min. Sci. 2022, 67, 179–193. [Google Scholar] [CrossRef]
- Sjstrm, S.; Klintens, E.; Johansson, P.; Nyqvist, J. Optimized model-based control of main mine ventilation air flows with minimized energy consumption. Int. J. Min. Sci. Technol. 2020, 30, 533–539. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational Forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
Number | Type | ||||
---|---|---|---|---|---|
1 | General | 0.03 | 27.416 | 22.631 | −2 |
2 | General | 0.036 | 25.199 | 22.594 | −3 |
3 | General | 0.012 | 18.643 | 4.084 | 0 |
4 | General | 0.018 | 8.774 | 1.356 | −1 |
5 | General | 0.016 | 9.491 | 1.442 | −1 |
6 | General | 0.013 | 15.708 | 3.189 | −2 |
7 | General | 0.008 | 12.774 | 1.302 | −5 |
8 | General | 0.007 | 14.642 | 1.396 | −2 |
9 | General | 0.008 | 12.532 | 1.253 | −5 |
10 | General | 0.007 | 12.666 | 1.045 | −2 |
11 | General | 0.027 | 41.681 | 47.726 | −2 |
12 | Fixed airflow | 0.04 | 25.973 | 26.827 | 0 |
13 | General | 0.034 | 38.64 | 50.799 | −1 |
14 | General | 0.024 | 44.098 | 46.744 | 0 |
15 | Fixed airflow | 0.043 | 25.455 | 28.111 | 0 |
16 | General | 0.022 | 47.909 | 50.591 | 100 |
17 | General | 0.05 | 22.602 | 25.288 | −2 |
18 | General | 0.031 | 40.097 | 50.496 | −1 |
19 | General | 0.03 | 40.867 | 49.472 | −1 |
20 | General | 0.028 | 126.646 | 450.053 | 100 |
21 | Fan | 0.026 | 126.646 | −575.404 | 100 |
Number | Before Optimization | Before Optimization | After Optimization | After Optimization | |
---|---|---|---|---|---|
1 | 27.416 | 22.631 | 16.800 | 8.467 | 0 |
2 | 25.199 | 22.594 | 58.400 | 122.780 | 0 |
3 | 18.643 | 4.084 | 15.300 | 2.809 | 0 |
4 | 8.774 | 1.356 | 1.500 | 0.041 | 0 |
5 | 9.491 | 1.442 | 28.400 | 593.038 | 580.133 |
6 | 15.708 | 3.189 | 30.000 | 544.079 | 532.379 |
7 | 12.774 | 1.302 | 12.600 | 718.481 | 717.211 |
8 | 14.642 | 1.396 | 4.200 | 0.123 | 0 |
9 | 12.532 | 1.253 | 37.200 | 11.071 | 0 |
10 | 12.666 | 1.045 | 21.200 | 3.146 | 0 |
11 | 41.681 | 47.726 | 60.000 | 97.200 | 0 |
12 | 25.973 | 26.827 | 30.000 | 668.905 | 665.305 |
13 | 38.64 | 50.799 | 51.200 | 89.129 | 0 |
14 | 44.098 | 46.744 | 45.300 | 49.250 | 0 |
15 | 25.455 | 28.111 | 30.000 | 3.600 | 0 |
16 | 47.909 | 50.591 | 60.000 | 79.200 | 0 |
17 | 22.602 | 25.288 | 10.200 | 723.058 | 717.856 |
18 | 40.097 | 50.496 | 34.200 | 798.562 | 762.303 |
19 | 40.867 | 49.472 | 40.100 | 48.240 | 0 |
20 | 126.646 | 450.053 | 145.400 | 591.952 | 0 |
21 | 126.646 | −575.404 | 145.400 | −181.626 | 0 |
Fan Roadway | Fan Models | Fan Characteristic Curve | Before Optimization | After Optimization | ||||
---|---|---|---|---|---|---|---|---|
Q (m3/s) | H (Pa) | Q (m3/s) | H (Pa) | |||||
1 | K40-4-No15 | 1038.6 | 50.055 | −0.9013 | 956.3 | 57.1 | 59 | 854.4 |
2 | K40-8-No18 | 408.78 | 18.13 | −0.5344 | 196.5 | 43.1 | 43 | 200.3 |
3 | K40-8-No18 | 408.78 | 18.13 | −0.5344 | 196.5 | 43.1 | 43 | 200.3 |
4 | K40-6-No12 | 398.88 | 21.483 | −2.6334 | 131.4 | 15.0 | 15 | 128.6 |
5 | K40-6-No13 | 433.66 | 24.514 | −2.039 | 153.7 | 19.2 | 20 | 108.3 |
6 | K40-6-No15 | 421.54 | 39.077 | −0.8905 | 825.3 | 27.2 | 43 | 455.3 |
7 | K40-4-No15 | 1038.6 | 50.055 | −0.9013 | 1634.8 | 38.2 | 40 | 1598.7 |
16 | K40-4-No10 | 617.87 | 33.808 | −5.3003 | 348.368 | 11 | 13 | 161.6 |
Number | Type | Regulator Levels | Airway Number | Airway Category | Regulator Levels | ||||
---|---|---|---|---|---|---|---|---|---|
1 | Fan | 0.0038 | 57.1 | 100 | 57 | General | 0.0626 | 18.8 | 2 |
2 | Fan | 0.0113 | 43.1 | 100 | 66 | Intake airflow | 0.2209 | 34.6 | 1 |
3 | Fan | 0.0055 | 43.1 | 100 | 73 | Fixed airflow | 0.0095 | 24.0 | −1 |
4 | Fan | 0.0391 | 15.0 | 100 | 81 | General | 0.0314 | 3.0 | −2 |
5 | Fan | 0.0249 | 19.2 | 100 | 83 | General | 0.0240 | 3.0 | 0 |
6 | Fan | 0.0789 | 27.2 | 100 | 99 | General | 0.0040 | 23.4 | −3 |
7 | Fan | 0.0409 | 38.2 | 100 | 111 | Fixed airflow | 0.1130 | 19.8 | −4 |
16 | Fan | 0.0470 | 11.0 | 100 | 119 | General | 0.0438 | 12.6 | −1 |
17 | Return airflow | 0.1370 | 57.1 | 2 | 128 | Intake airflow | 0.2955 | 30.7 | −4 |
21 | Fixed airflow | 0.0277 | 10.0 | 1 | 129 | Intake airflow | 0.3109 | 30.1 | −3 |
26 | General | 0.0095 | 9.7 | −2 | 130 | General | 0.0276 | 11.5 | −3 |
27 | General | 0.0031 | 4.7 | 2 | 131 | General | 0.0840 | 4.0 | −2 |
37 | General | 0.0634 | 24.2 | 0 | 134 | General | 0.1039 | 15.7 | −2 |
42 | General | 0.0185 | 5.9 | −4 | 154 | Fixed airflow | 0.0252 | 9.0 | 5 |
44 | General | 0.0245 | 9.6 | −4 | 156 | Fixed airflow | 0.0122 | 11.5 | 1 |
54 | General | 0.0124 | 4.5 | 2 | 168 | General | 0.2250 | 6.6 | −2 |
55 | General | 0.0093 | 1.5 | 2 | 178 | Return airflow | 1.2300 | 38.2 | −5 |
Number | Type | Before Optimization Q (m3/s) | After Optimization Q (m3/s) | Regulator Levels | ||
---|---|---|---|---|---|---|
26 | General | 0.0095 | 9.7 | 17 | −61.4 | −2 |
27 | General | 0.0031 | 4.7 | 33 | −119.6 | 2 |
37 | General | 0.0634 | 24.2 | 39 | −62.3 | 0 |
42 | General | 0.0185 | 5.9 | 1 | −44.4 | −4 |
44 | General | 0.0245 | 9.6 | 45 | −144.0 | −4 |
54 | General | 0.0124 | 4.5 | 3 | 98.7 | 2 |
55 | General | 0.0093 | 1.5 | 3 | 97.3 | 2 |
57 | General | 0.0626 | 18.8 | 12 | 78.7 | 2 |
66 | Intake airflow | 0.2209 | 34.6 | 57 | −664.2 | 1 |
81 | General | 0.0314 | 3.0 | 1 | 1.1 | −2 |
83 | General | 0.0240 | 3.0 | 1 | 1.5 | 0 |
99 | General | 0.0040 | 23.4 | 18 | −47.4 | −3 |
119 | General | 0.0438 | 12.6 | 1 | 20.3 | −1 |
129 | Intake airflow | 0.3109 | 30.1 | 21 | 24.5 | −3 |
130 | General | 0.0276 | 11.5 | 36 | −55.2 | −3 |
131 | General | 0.0840 | 4.0 | 9 | 155.8 | −2 |
134 | General | 0.1039 | 15.7 | 1 | 43.4 | −2 |
168 | General | 0.2250 | 6.6 | 20 | −91.2 | −2 |
178 | Return airflow | 1.2300 | 38.2 | 41 | −748.5 | −5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, D.; Wen, L.; Liu, Y.; Wu, Z.; Wang, L. Optimizing Mine Ventilation Systems: An Advanced Mixed-Integer Linear Programming Model. Mathematics 2025, 13, 2906. https://doi.org/10.3390/math13182906
Zhong D, Wen L, Liu Y, Wu Z, Wang L. Optimizing Mine Ventilation Systems: An Advanced Mixed-Integer Linear Programming Model. Mathematics. 2025; 13(18):2906. https://doi.org/10.3390/math13182906
Chicago/Turabian StyleZhong, Deyun, Lixue Wen, Yulong Liu, Zhaohao Wu, and Liguan Wang. 2025. "Optimizing Mine Ventilation Systems: An Advanced Mixed-Integer Linear Programming Model" Mathematics 13, no. 18: 2906. https://doi.org/10.3390/math13182906
APA StyleZhong, D., Wen, L., Liu, Y., Wu, Z., & Wang, L. (2025). Optimizing Mine Ventilation Systems: An Advanced Mixed-Integer Linear Programming Model. Mathematics, 13(18), 2906. https://doi.org/10.3390/math13182906