A Fixed-Point Chatterjea–Singh Mapping Approach: Existence and Uniqueness of Solutions to Nonlinear BVPs
Abstract
1. Introduction
2. Preliminaries
3. Main Result: Chatterjea–Singh Framework for BVPs
3.1. Vector Case: First-Order Dependence
- Step 1.
- T maps into itself.
- Step 2.
- is complete under .
- Step 3.
- Construct a Cauchy sequence.
- Step 4.
- Existence of fixed point for S.
- Step 5.
- is a fixed point of T .
- Step 6.
- solves the BVP.
- Step 7.
- Uniqueness.
3.2. Scalar Case
4. Examples and Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kelley, W.G.; Peterson, A.C. The Theory of Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Kannan, R. Fixed Point Theorems in Reflexive Banach Spaces. Proc. Am. Math. Soc. 1973, 38, 111–118. [Google Scholar] [CrossRef]
- Chatterjea, D.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Singh, S.P. Some results on fixed points theorems. Yokohama Math. J. 1969, 17, 61–64. [Google Scholar]
- Singh, S.P. Some theorems on fixed points. Yokohama Math. J. 1977, 25, 83–88. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Fisher, B. On two mappings on metric spaces. Bull. Math. Soc. Sci. Math. Roumanie 1974, 18, 57–60. [Google Scholar]
- Cvetković, M. On the iterates of Chatterjea contraction. Acta Math. Hungar 2025, 175, 507–518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekri, Z.; Fabiano, N.; Alsharidi, A.K.; Alomair, M.A. A Fixed-Point Chatterjea–Singh Mapping Approach: Existence and Uniqueness of Solutions to Nonlinear BVPs. Mathematics 2025, 13, 3295. https://doi.org/10.3390/math13203295
Bekri Z, Fabiano N, Alsharidi AK, Alomair MA. A Fixed-Point Chatterjea–Singh Mapping Approach: Existence and Uniqueness of Solutions to Nonlinear BVPs. Mathematics. 2025; 13(20):3295. https://doi.org/10.3390/math13203295
Chicago/Turabian StyleBekri, Zouaoui, Nicola Fabiano, Abdulaziz Khalid Alsharidi, and Mohammed Ahmed Alomair. 2025. "A Fixed-Point Chatterjea–Singh Mapping Approach: Existence and Uniqueness of Solutions to Nonlinear BVPs" Mathematics 13, no. 20: 3295. https://doi.org/10.3390/math13203295
APA StyleBekri, Z., Fabiano, N., Alsharidi, A. K., & Alomair, M. A. (2025). A Fixed-Point Chatterjea–Singh Mapping Approach: Existence and Uniqueness of Solutions to Nonlinear BVPs. Mathematics, 13(20), 3295. https://doi.org/10.3390/math13203295

