Next Article in Journal
O-Regular Mappings on C(C): A Structured Operator–Theoretic Framework
Previous Article in Journal
Whose Investment in Pollution Abatement Is Better for the Environment in a Textile and Garment Supply Chain When Considering Risk Attitudes?
Previous Article in Special Issue
Analytical Study of Nonlinear Systems of Higher-Order Difference Equations: Solutions, Stability, and Numerical Simulations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations

1
Department of Applied Mathematics, Abdelhafid Boussouf University Center, Mila, R.P 26, Mila 43000, Algeria
2
Laboratory of Mathematics and Their Interactions, Department of Mathematics, Abdelhafid Boussouf University Center, Mila, R.P 26, Mila 43000, Algeria
3
Department of Management Information Systems, College of Business and Economics, Qassim University, Buraydah 51452, Saudi Arabia
4
Department of Mathematics, Faculty of Science, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
5
Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo 10587, Egypt
6
Jadara Research Center, Jadara University, Irbid 21110, Jordan
7
Department of Mathematics, Faculty of Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(20), 3327; https://doi.org/10.3390/math13203327
Submission received: 22 August 2025 / Revised: 21 September 2025 / Accepted: 17 October 2025 / Published: 18 October 2025
(This article belongs to the Special Issue Nonlinear Dynamics, Chaos, and Mathematical Physics)

Abstract

In this paper, we investigate the behavior of solutions to a nonlinear system of rational difference equations of order two, defined by x n + 1 = x n y n 1 y n ( a + b x n y n 1 ) , y n + 1 = y n z n 1 z n ( c + d y n z n 1 ) , z n + 1 = z n x n 1 x n ( e + f z n x n 1 ) , where n denotes a nonzero integer; the parameters a , b , c , d , e , f are real constants; and the initial conditions x 1 , x 0 , y 1 , y 0 , z 1 , z 0 are nonzero real numbers. By applying a suitable variable transformation, we reduce the original coupled system to three independent rational difference equations. This allows for separate analysis using established methods for second-order nonlinear recurrence relations. We derive explicit solutions and examine the qualitative behavior, including boundedness and periodicity, under different conditions. Our findings contribute to the theory of rational difference equations and offer insights for higher-order systems in applied sciences.

1. Introduction

Difference equations play a fundamental role in modeling discrete-time dynamical systems where the current state depends on one or more past states. In particular, nonlinear systems of difference equations where the state at time k + 1 is determined by nonlinear functions of the previous k states are essential for understanding the behavior of complex systems across various scientific disciplines. These include biology, ecology, physics, and economics, where such models are often used to describe population dynamics, economic cycles, and physical processes [1,2,3,4]. Difference equations are widely applied across diverse fields. In economics, they model the evolution of key indicators such as GDP and inflation rates, which are naturally observed at discrete time intervals. In biology, they capture population dynamics, where nonlinear difference equations are frequently employed to describe growth processes, as highlighted by Elaydi [5]. Leinartas [6] introduced a systematic framework for understanding the fundamental solutions of multidimensional homogeneous linear difference equations with constant coefficients, employing multiple Laurent series as a powerful tool for solving the associated Cauchy problem. Linear recurrences with constant coefficients also form a cornerstone of discrete mathematics, particularly in the study of sequences and generating functions. Building on this foundation, Bousquet-Mélou and Petkovšek [7] extended the theory to the multivariate case, offering a unified framework for analyzing such recurrences with important implications in combinatorics, computer science, and mathematical education.
In recent years, there has been a growing interest in the theoretical analysis of nonlinear difference systems, with particular attention being paid to qualitative properties such as boundedness, periodicity, and global asymptotic stability [8,9,10,11,12,13,14,15,16,17,18]. These properties are fundamental for predicting long-term behavior and ensuring the robustness of models in practical applications.
Chuiko et al. [19] established constructive conditions for the solvability of linear boundary-value problems in difference-algebraic systems. Their work introduced a unified framework for constructing solutions and a classification scheme that elucidates the structural properties of such systems, with implications for engineering and physics. Stević et al. [20] studied a class of generalized hyperbolic–cotangent-type difference equations, showing that solvability is determined by algebraic rather than trigonometric relations, thereby simplifying the solution process and extending applicability. Research on higher-order difference equations has also progressed; for example, Mkhwanazi et al. [21] employed Lie symmetry analysis to derive nontrivial symmetries in higher-order systems, enabling exact solutions.
When analytical approaches are not feasible, numerical methods provide effective alternatives. Xing et al. [22] developed a fourth-order conservative difference scheme for Riesz space-fractional sine-Gordon equations, demonstrating both solvability and convergence, and highlighting the strength of computational approaches. Stability, a central aspect of solvability, was addressed by Alzabut et al. [23], who derived solvability and stability conditions for nonlinear hybrid Δ -difference equations of fractional order, emphasizing their practical significance. In control theory, Wang et al. [24] explored linear quadratic optimal control for time-delay stochastic systems, establishing solvability through Riccati equations. Their results illustrate the strong interplay between solvability theory and system optimization.
Numerous studies have examined specific nonlinear systems of difference equations. For example, Alayachi et al. [25] analyzed local and global attractivity, periodicity, and solutions of a sixth-order difference equation and provided several numerical examples to illustrate their findings. In another study, Sanbo and Elsayed [26] investigated the periodicity, stability, and particular solutions of a fifth-order recursive equation. Almatrafi and Alzubaidi [27] explored the dynamical behavior of an eighth-order difference relation, presenting two-dimensional graphical representations of their results. Furthermore, Ahmed et al. [28] introduced new solutions and performed a dynamical analysis of certain nonlinear fifteenth-order difference equations. Kurbanli et al. [17] studied the dynamics of positive solutions for the system:
x n + 1 = x n 1 y n x n 1 + 1 , y n + 1 = y n 1 x n y n 1 + 1 , n denotes a nonzero integer ,
under the initial conditions x 0 , x 1 , y 0 , y 1 [ 0 , + ) .
Kara et al. [15] studied the solvability and asymptotic behavior of the system
x n = x n k y n k l y n l ( a n + b n x n k y n k l ) , y n = y n k x n k l x n l ( α n + β n y n k x n k l ) , n denotes a nonzero integer ,
where k , l N and ( a n ) , ( b n ) , ( α n ) , ( β n ) are sequences of real numbers.
Halim et al. [13] derived the general solution for the system
x n + 1 = y n 1 x n 2 y n ( a + b y n 1 y n 2 ) , y n + 1 = x n 1 y n 2 x n ( a + b x n 1 y n 2 ) , n denotes a nonzero integer ,
where a , b R and the initial conditions are real numbers.
El-Dessoky et al. [10] investigated the system
x n + 1 = x n 3 y n 4 y n ( ± 1 ± x n 3 y n 4 ) , y n + 1 = y n 3 x n 4 x n ( ± 1 ± y n 3 x n 4 ) , n denotes a nonzero integer ,
where the initial conditions are nonzero real numbers.
Stević et al. [18] examined the equation
x n = x n 2 x n k 2 x n k ( a n + b n x n 2 x n k 2 ) , n denotes a nonzero integer ,
where k N , the initial conditions are nonzero real numbers, and ( a n ) , ( b n ) are sequences of real numbers.
Elsayed et al. [11] explored the periodicity and structure of solutions of the system
x n + 1 = x n 2 y n 1 y n ( ± 1 ± x n 2 y n 1 ) , y n + 1 = y n 2 x n 1 x n ( ± 1 ± y n 2 x n 1 ) , n denotes a nonzero integer ,
where the initial conditions are nonzero real numbers.
Kara and Yazlik [16] obtained the solution of the system
x n = x n 4 y n 5 y n 1 ( a n + b n x n 2 y n 3 x n 4 y n 5 ) , y n = y n 4 x n 5 x n 1 ( α n + β n y n 2 x n 3 y n 4 x n 5 ) , n denotes a nonzero integer ,
under nonzero real initial conditions.
This paper provides closed-form solutions for a class of difference equations, extending a system of such equations. It investigates their qualitative behavior, contributing to the understanding of difference equations in scientific applications. The main goal is to present closed-form solutions and explore their dynamics:
x n + 1 = x n y n 1 y n ( a + b x n y n 1 ) , y n + 1 = y n z n 1 z n ( c + d y n z n 1 ) , z n + 1 = z n x n 1 x n ( e + f z n x n 1 ) .
The study provides analytical expressions for the solutions and analyzes their qualitative behavior.

2. Main Results

In this section, we derive the solutions of the following nonlinear system of difference equations:
x n + 1 = x n y n 1 y n ( a + b x n y n 1 ) , y n + 1 = y n z n 1 z n ( c + d y n z n 1 ) , z n + 1 = z n x n 1 x n ( e + f z n x n 1 ) ,
where n denotes a nonzero integer; the parameters a , b , c , d , e , f are real constants; and the initial conditions x 1 ,   x 0 ,   y 1 ,   y 0 ,   z 1 , and z 0 are nonzero real numbers.
To simplify the analysis, we introduce the following auxiliary variables:
u n = x n y n 1 , v n = y n z n 1 , w n = z n x n 1 , n denotes a nonzero integer .
With this change in variables, the original system (8) transforms into the following decoupled system:
u n + 1 = u n 1 a + b u n , v n + 1 = v n 1 c + d v n , w n + 1 = w n 1 e + f w n , n denotes a nonzero integer .
This transformation enables independent analysis of each equation in (10). In the subsequent analysis, we focus on solving each of these recursive relations, describing the behavior of their solutions, and reconstructing the original sequences ( x n ) , ( y n ) , ( z n ) using the inverse of the transformation (9).

Solutions of x n + 1 = x n α + β x n

In this section, we derive the closed-form solution of the difference equation
x n + 1 = x n α + β x n , n denotes a nonzero integer .
This equation can be transformed into a simpler form using by changing the variables. First, we define a new sequence w n such that
x n = 1 β w n α , n denotes a nonzero integer .
Substituting this transformation into the original difference Equation (11) leads to the following equation for w n :
w n + 1 = ( α + 1 ) w n α w n , n denotes a nonzero integer .
Now, we consider Equation (13) with the initial condition w 0 0 .
To simplify this equation further, we introduce the transformation
w n = t n t n 1 , n denotes a nonzero integer ,
where t 1 , t 0 are nonzero real numbers. This transforms Equation (13) into the following recurrence relation for t n :
t n + 1 ( α + 1 ) t n + α t n 1 = 0 , n denotes a nonzero integer .
The characteristic equation associated with Equation (15) is
λ 2 ( 1 + α ) λ + α = 0 .
Here, we state the following lemmas without proof.
Lemma 1.
The solution of Equation (15) can be expressed as follows:
1. 
If α 1 , then
t n = 1 1 α t 0 1 α n + 1 α t 1 1 α n , n d e n o t e s a n o n z e r o i n t e g e r .
2. 
If α = 1 , then
t n = t 0 ( n + 1 ) t 1 n , n d e n o t e s a n o n z e r o i n t e g e r .
Lemma 2.
Let { w n } n 1 be a solution to Equation (13). The following statements are true:
1. 
If α 1 , then
w n = α ( 1 α n ) w 0 ( 1 α n + 1 ) α ( 1 α n 1 ) w 0 ( 1 α n ) , n d e n o t e s a n o n z e r o i n t e g e r .
2. 
If α = 1 , then
w n = n w 0 ( n + 1 ) ( n 1 ) w 0 n , n d e n o t e s a n o n z e r o i n t e g e r .
Using the above arguments, we obtain the following results:
Theorem 1.
Let { x n } n 1 be an admissible solution of Equation (11). The following statements are true:
1. 
If α 1 , then
x n = x 0 α n + β i = 0 n 1 α i x 0 , n d e n o t e s a n o n z e r o i n t e g e r .
2. 
If α = 1 , then
x n = x 0 1 + β n x 0 , n d e n o t e s a n o n z e r o i n t e g e r .
Theorem 2.
Let { u n , v n , w n } n 1 be an admissible solution of System (10). The following statements are true:
1. 
If α 1 , then
u n = u 0 a n + b i = 0 n 1 a i u 0 , v n = v 0 c n + d i = 0 n 1 c i v 0 , w n = w 0 e n + f i = 0 n 1 e i w 0 ,
where n denotes a nonzero integer.
2. 
If α = 1 , then
u n = u 0 1 + b n u 0 , v n = v 0 1 + d n v 0 , w n = w 0 1 + f n w 0 ,
where n denotes a nonzero integer.
The main result in this section is the following:
Corollary 1.
Let { x n , y n , z n } n 1 be an admissible solution of system (8). Then, the following statements are true:
1. 
If a 1 , c 1 and e 1 , then the solution of system (8) satisfies
x 6 n = x 0 × × i = 0 n 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 z 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 ,
x 6 n 1 = x 1 e 6 n + f r = 0 6 n 1 e r z 0 x 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 ,
x 6 n + 1 = x 0 y 1 y 0 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 × × i = 0 n 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
x 6 n + 2 = z 0 x 0 y 1 c 6 n + 1 + d r = 0 6 n c r y 0 z 1 y 0 z 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 × × i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
x 6 n + 3 = z 0 y 1 x 1 c 6 n + 2 + d r = 0 6 n + 1 c r y 0 z 1 y 0 z 1 a 6 n + 3 + b r = 0 6 n + 2 a r x 0 y 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
x 6 n + 4 = z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 c 6 n + 3 + d r = 0 6 n + 2 c r y 0 z 1 z 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 a 6 n + 4 + b r = 0 6 n + 3 a r x 0 y 1 × × i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
y 6 n = y 0 × × i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
y 6 n 1 = y 1 a 6 n + b r = 0 6 n 1 a r x 0 y 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
y 6 n + 1 = y 0 z 1 z 0 c 6 n + 1 + d r = 0 6 n c r y 0 z 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 ,
y 6 n + 2 = x 0 y 0 z 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 z 0 x 1 c 6 n + 2 + d r = 0 6 n + 1 c r y 0 z 1 × × i = 0 n 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 ,
y 6 n + 3 = x 0 y 1 z 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 c 6 n + 3 + d r = 0 6 n + 2 c r y 0 z 1 × × i = 0 n 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
y 6 n + 4 = x 0 y 1 c 6 n + 1 + d r = 0 6 n c r y 0 z 1 e 6 n + 3 + f r = 0 6 n + 2 e r z 0 x 1 x 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 c 6 n + 4 + d r = 0 6 n + 3 c r y 0 z 1 × × i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
z 6 n = z 0 × × i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
z 6 n 1 = z 1 c 6 n + d r = 0 6 n 1 c r y 0 z 1 × × i = 0 n 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
z 6 n + 1 = z 0 x 1 x 0 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
z 6 n + 2 = y 0 y 0 z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 x 0 y 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 × × i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 c 6 i 3 + d r = 0 6 i 4 c r y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 c 6 i + d r = 0 6 i 1 c r y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
z 6 n + 3 = y 0 z 1 x 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 x 0 y 1 c 6 n + 1 + d r = 0 6 n c r y 0 z 1 e 6 n + 3 + f r = 0 6 n + 2 e r z 0 x 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 c 6 i 2 + d r = 0 6 i 3 c r y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 c 6 i 5 + d r = 0 6 i 6 c r y 0 z 1 ,
z 6 n + 4 = y 0 z 1 a 6 n + 3 + b r = 0 6 n + 2 a r x 0 y 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 y 1 c 6 n + 2 + d r = 0 6 n + 1 c r y 0 z 1 e 6 n + 4 + f r = 0 6 n + 3 e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 c 6 i 4 + d r = 0 6 i 5 c r y 0 z 1 c 6 i 1 + d r = 0 6 i 2 c r y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 .
2. 
If a = 1 , c = 1 , and e = 1 , then the solution of system (8) satisfies
x 6 n = x 0 i = 0 n 1 1 + d 6 i 1 y 0 z 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 ,
x 6 n 1 = x 1 1 + f 6 n z 0 x 1 i = 0 n 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
x 6 n + 1 = x 0 y 1 y 0 1 + b 6 n + 1 x 0 y 1 × × i = 0 n 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 ,
x 6 n + 2 = z 0 x 0 y 1 1 + d 6 n + 1 y 0 z 1 y 0 z 1 1 + b 6 n + 2 x 0 y 1 × × i = 0 n 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 ,
x 6 n + 3 = z 0 y 1 x 1 1 + d 6 n + 2 y 0 z 1 y 0 z 1 1 + b 6 n + 3 x 0 y 1 1 + f 6 n + 1 z 0 x 1 × × i = 0 n 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 ,
x 6 n + 4 = z 0 x 1 1 + b 6 n + 1 x 0 y 1 1 + d 6 n + 3 y 0 z 1 z 1 1 + f 6 n + 2 z 0 x 1 1 + b 6 n + 4 x 0 y 1 × × i = 0 n 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 ,
y 6 n = y 0 i = 0 n 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 ,
y 6 n 1 = y 1 1 + b 6 n x 0 y 1 i = 0 n 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 ,
y 6 n + 1 = y 0 z 1 z 0 1 + d 6 n + 1 y 0 z 1 × × i = 0 n 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
y 6 n + 2 = x 0 y 0 z 1 1 + f 6 n + 1 z 0 x 1 z 0 x 1 1 + d 6 n + 2 y 0 z 1 × × i = 0 n 1 1 + d 6 i 1 y 0 x 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 ,
y 6 n + 3 = x 0 y 1 z 1 1 + f 6 n + 2 z 0 x 1 z 0 x 1 1 + b 6 n + 1 x 0 y 1 1 + d 6 n + 3 y 0 z 1 × × i = 0 n 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 ,
y 6 n + 4 = x 0 y 1 1 + d 6 n + 1 y 0 z 1 1 + f 6 n + 3 z 0 x 1 x 1 1 + b 6 n + 2 x 0 y 1 1 + d 6 n + 4 y 0 z 1 × × i = 0 n 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 ,
z 6 n = z 0 i = 0 n 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 ,
z 6 n 1 = z 1 1 + d 6 n y 0 z 1 i = 0 n 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 ,
z 6 n + 1 = z 0 x 1 x 0 1 + f 6 n + 1 z 0 x 1 × × i = 0 n 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 ,
z 6 n + 2 = y 0 y 0 z 0 x 1 1 + b 6 n + 1 x 0 y 1 x 0 y 1 1 + f 6 n + 2 z 0 x 1 × × i = 0 n 1 1 + f 6 i 1 z 0 x 1 1 + d 6 i 3 y 0 z 1 1 + b 6 i 5 x 0 y 1 1 + d 6 i y 0 z 1 1 + b 6 i 2 x 0 y 1 1 + f 6 i 4 z 0 x 1 ,
z 6 n + 3 = y 0 z 1 x 1 1 + b 6 n + 2 x 0 y 1 x 0 y 1 1 + d 6 n + 1 y 0 z 1 1 + f 6 n + 3 z 0 x 1 × × i = 0 n 1 1 + f 6 i z 0 x 1 1 + d 6 i 2 y 0 z 1 1 + b 6 i 4 x 0 y 1 1 + b 6 i 1 x 0 y 1 1 + f 6 i 3 z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
z 6 n + 4 = y 0 z 1 1 + b 6 n + 3 x 0 y 1 1 + f 6 n + 1 z 0 x 1 y 1 1 + d 6 n + 2 y 0 z 1 1 + f 6 n + 4 z 0 x 1 × × i = 0 n 1 1 + b 6 i x 0 y 1 1 + f 6 i 2 z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 1 + b 6 i 3 x 0 y 1 1 + f 6 i 5 z 0 x 1 .
3. 
If a 1 , c = 1 , and e 1 , then the solution of system (8) satisfies
x 6 n = x 0 i = 0 n 1 1 + d 6 i 1 y 0 z 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 ,
x 6 n 1 = x 1 e 6 n + f r = 0 6 n 1 e r z 0 x 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 1 + d 6 i 2 y 0 z 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
x 6 n + 1 = x 0 y 1 y 0 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 × × i = 0 n 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 1 + d 6 i 3 y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
x 6 n + 2 = z 0 x 0 y 1 1 + d 6 n + 1 y 0 z 1 y 0 z 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 × × i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 1 + d 6 i 2 y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
x 6 n + 3 = z 0 y 1 x 1 1 + d 6 n + 2 y 0 z 1 y 0 z 1 a 6 n + 3 + b r = 0 6 n + 2 a r x 0 y 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
x 6 n + 4 = z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 1 + d 6 n + 3 y 0 z 1 z 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 a 6 n + 4 + b r = 0 6 n + 3 a r x 0 y 1 × × i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 1 + d 6 i 3 y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
y 6 n = y 0 i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 1 + d 6 i 3 y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
y 6 n 1 = y 1 a 6 n + b r = 0 6 n 1 a r x 0 y 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
y 6 n + 1 = y 0 z 1 z 0 1 + d 6 n + 1 y 0 z 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 1 + d 6 i 2 y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
y 6 n + 2 = x 0 y 0 z 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 z 0 x 1 1 + d 6 n + 2 y 0 z 1 × × i = 0 n 1 1 + d 6 i 1 y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 ,
y 6 n + 3 = x 0 y 1 z 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 1 + d 6 n + 3 y 0 z 1 × × i = 0 n 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
y 6 n + 4 = x 0 y 1 1 + d 6 n + 1 y 0 z 1 e 6 n + 3 + f r = 0 6 n + 2 e r z 0 x 1 x 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 1 + d 6 n + 4 y 0 z 1 × × i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 1 + d 6 i 2 y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
z 6 n = z 0 i = 0 n 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 1 + d 6 i 2 y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 ,
z 6 n 1 = z 1 1 + d 6 n y 0 z 1 × × i = 0 n 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 1 + d 6 i 3 y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 ,
z 6 n + 1 = z 0 x 1 x 0 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 ,
z 6 n + 2 = y 0 y 0 z 0 x 1 a 6 n + 1 + b r = 0 6 n a r x 0 y 1 x 0 y 1 e 6 n + 2 + f r = 0 6 n + 1 e r z 0 x 1 × × i = 0 n 1 e 6 i 1 + f r = 0 6 i 2 e r z 0 x 1 1 + d 6 i 3 y 0 z 1 a 6 i 5 + b r = 0 6 i 6 a r x 0 y 1 1 + d 6 i y 0 z 1 a 6 i 2 + b r = 0 6 i 3 a r x 0 y 1 e 6 i 4 + f r = 0 6 i 5 e r z 0 x 1 ,
z 6 n + 3 = y 0 z 1 x 1 a 6 n + 2 + b r = 0 6 n + 1 a r x 0 y 1 x 0 y 1 1 + d 6 n + 1 y 0 z 1 e 6 n + 3 + f r = 0 6 n + 2 e r z 0 x 1 × × i = 0 n 1 e 6 i + f r = 0 6 i 1 e r z 0 x 1 1 + d 6 i 2 y 0 z 1 a 6 i 4 + b r = 0 6 i 5 a r x 0 y 1 a 6 i 1 + b r = 0 6 i 2 a r x 0 y 1 e 6 i 3 + f r = 0 6 i 4 e r z 0 x 1 1 + d 6 i 5 y 0 z 1 ,
z 6 n + 4 = y 0 z 1 a 6 n + 3 + b r = 0 6 n + 2 a r x 0 y 1 e 6 n + 1 + f r = 0 6 n e r z 0 x 1 y 1 1 + d 6 n + 2 y 0 z 1 e 6 n + 4 + f r = 0 6 n + 3 e r z 0 x 1 × × i = 0 n 1 a 6 i + b r = 0 6 i 1 a r x 0 y 1 e 6 i 2 + f r = 0 6 i 3 e r z 0 x 1 1 + d 6 i 4 y 0 z 1 1 + d 6 i 1 y 0 x 1 a 6 i 3 + b r = 0 6 i 4 a r x 0 y 1 e 6 i 5 + f r = 0 6 i 6 e r z 0 x 1 .
Proof. 
Using Formula (9), we can write the following for all (n denotes a nonzero integer):
x n = u n y n 1 ,
y n = v n z n 1 ,
z n = w n x n 1 .
Using Formulas (18)–(20), after some calculations, we obtain
x 6 n = u 6 n w 6 n 2 v 6 n 4 v 6 n 1 u 6 n 3 w 6 n 5 x 6 n 6 ,
y 6 n = v 6 n u 6 n 2 w 6 n 4 w 6 n 1 v 6 n 3 u 6 n 5 y 6 n 6
and
z 6 n = w 6 n v 6 n 2 u 6 n 4 u 6 n 1 w 6 n 3 v 6 n 5 z 6 n 6 ,
for any n N . This implies that
x 6 n = x 0 i = 0 n 1 u 6 i w 6 i 2 v 6 i 4 v 6 i 1 u 6 i 3 w 6 i 5 ,
y 6 n = y 0 i = 0 n 1 v 6 i u 6 i 2 w 6 i 4 w 6 i 1 v 6 i 3 u 6 i 5 ,
z 6 n = z 0 i = 0 n 1 w 6 i v 6 i 2 u 6 i 4 u 6 i 1 w 6 i 3 v 6 i 5 .
Using Equations (18)–(20), we obtain
x 6 n 1 = w 6 n z 6 n = w 6 n z 0 i = 0 n 1 u 6 i 1 w 6 i 3 v 6 i 5 w 6 i v 6 i 2 u 6 i 4 , y 6 n 1 = u 6 n x 6 n = u 6 n x 0 i = 0 n 1 v 6 i 1 u 6 i 3 w 6 i 5 u 6 i w 6 i 2 v 6 i 4 , z 6 n 1 = v 6 n y 6 n = v 6 n y 0 i = 0 n 1 w 6 i 1 v 6 i 3 u 6 i 5 v 6 i u 6 i 2 w 6 i 4 ,
x 6 n + 1 = u 6 n + 1 y 6 n = u 6 n + 1 y 0 i = 0 n 1 w 6 i 1 v 6 i 3 u 6 i 5 v 6 i u 6 i 2 w 6 i 4 , y 6 n + 1 = v 6 n + 1 z 6 n = v 6 n + 1 z 0 i = 0 n 1 u 6 i 1 w 6 i 3 v 6 i 5 w 6 i v 6 i 2 u 6 i 4 , z 6 n + 1 = w 6 n + 1 x 6 n = w 6 n + 1 x 0 i = 0 n 1 v 6 i 1 u 6 i 3 w 6 i 5 u 6 i w 6 i 2 v 6 i 4 ,
x 6 n + 2 = u 6 n + 2 y 6 n + 1 = z 0 u 6 n + 2 v 6 n + 1 i = 0 n 1 w 6 i v 6 i 2 u 6 i 4 u 6 i 1 w 6 i 3 v 6 i 5 , y 6 n + 2 = v 6 n + 2 z 6 n + 1 = x 0 v 6 n + 2 w 6 n + 1 i = 0 n 1 u 6 i w 6 i 2 v 6 i 4 v 6 i 1 u 6 i 3 w 6 i 5 , z 6 n + 2 = w 6 n + 2 x 6 n + 1 = y 0 w 6 n + 2 u 6 n + 1 i = 0 n 1 v 6 i u 6 i 2 w 6 i 4 w 6 i 1 v 6 i 3 u 6 i 5 ,
x 6 n + 3 = u 6 n + 3 y 6 n + 2 = u 6 n + 3 w 6 n + 1 x 0 v 6 n + 2 i = 0 n 1 v 6 i 1 u 6 i 3 w 6 i 5 u 6 i w 6 i 2 v 6 i 4 , y 6 n + 3 = v 6 n + 3 z 6 n + 2 = u 6 n + 1 v 6 n + 3 y 0 w 6 n + 2 i = 0 n 1 w 6 i 1 v 6 i 3 u 6 i 5 v 6 i u 6 i 2 w 6 i 4 , z 6 n + 3 = w 6 n + 3 x 6 n + 2 = v 6 n + 1 w 6 n + 3 z 0 u 6 n + 2 i = 0 n 1 u 6 i 1 w 6 i 3 v 6 i 5 w 6 i v 6 i 2 u 6 i 4 ,
x 6 n + 4 = u 6 n + 4 y 6 n + 3 = y 0 w 6 n + 2 u 6 n + 4 u 6 n + 1 v 6 n + 3 i = 0 n 1 v 6 i u 6 i 2 w 6 i 4 w 6 i 1 v 6 i 3 u 6 i 5 , y 6 n + 4 = v 6 n + 4 z 6 n + 3 = z 0 u 6 n + 2 v 6 n + 4 v 6 n + 1 w 6 n + 3 i = 0 n 1 w 6 i v 6 i 2 u 6 i 4 u 6 i 1 w 6 i 3 v 6 i 5 , z 6 n + 4 = w 6 n + 4 x 6 n + 3 = x 0 v 6 n + 2 w 6 n + 4 u 6 n + 3 w 6 n + 1 i = 0 n 1 v 6 i 1 u 6 i 3 w 6 i 5 u 6 i w 6 i 2 v 6 i 4 .
The result is supported by Theorem 2, where the following initial conditions are considered:
u 0 = x 0 y 1 , v 0 = y 0 z 1 , w 0 = z 0 x 1 .

3. Numerical Simulation

In this section, we provide numerical examples to illustrate the theoretical results obtained for the nonlinear difference systems discussed earlier. The calculations are carried out using initial conditions that satisfy the assumptions stated in the previous sections. The simulations provide visual insight into the system’s stability, oscillatory behavior, and divergence patterns.
Example 1.
To illustrate and validate the theoretical results, we perform numerical simulations of the system given in Equation (8) under the following parameter configurations:
  • State 1: a = 1.5 , b = 1.04 , c = 1.5 , d = 1 , e = 1.80 and f = 2 .
  • State 2: a = 1 ,   b = 1.8 ,   c = 1 ,   d = 1.2 ,   e = 1 and f = 2 .
  • State 3: a = 0.95 ,   b = 0.1 ,   c = 0.94 ,   d = 1.14 ,   e = 0.59 ,   f = 0.930 .
  • State 4: a = 2.1523 ,   b = 6.83 ,   c = 1.193 ,   d = 2.84 ,   e = 2.93 ,   f = 2.32 .
The initial conditions are x k = 5 + k / 4 ,   y k = 5 + k / 3 ,   z k = 5 + k / 2 , a n d   k = 0 , 1 . The diagram of the system (8) is shown in Figure 1.

4. Conclusions

In this paper, we have derived admissible solutions of the nonlinear system of rational difference equations of order two:
x n + 1 = x n y n 1 y n ( a + b x n y n 1 ) , y n + 1 = y n z n 1 z n ( c + d y n z n 1 ) , z n + 1 = z n x n 1 x n ( e + f z n x n 1 ) ,
Here, n denotes a nonzero integer, the parameters a , b , c , d , e , f R , and the initial conditions x 1 ,   x 0 ,   y 1 ,   y 0 ,   z 1 , and z 0 represents nonzero real numbers.
By introducing a change in variables, we transformed the coupled system into a set of independent equations, which allowed for a detailed analysis of each sequence. We derived explicit recurrence relations and examined the qualitative behavior of the solutions, including their stability, boundedness, and periodicity. In addition, we discussed the conditions under which the system exhibits long-term dynamics and convergence.
This study improves the understanding of rational difference equations in multiple fields, including mathematical biology, physics, and economics, where systems of this form can be used to model interactions between multiple variables.
Future work could extend this analysis to higher-order systems or incorporate additional complexities, such as time delays or stochastic perturbations. Moreover, exploring the practical implications of solutions in real-world applications, such as population dynamics or economic modeling, presents an exciting avenue for further research.

5. Future Work

The results established in this paper open several promising avenues for future investigation. One natural extension is the study of more generalized and higher-dimensional nonlinear difference systems. In particular, we intend to analyze the following three-dimensional system:
x n + 1 = x n k y n ( k + 1 ) y n a + b x n k y n ( k + 1 ) , y n + 1 = y n k z n ( k + 1 ) z n c + d y n k z n ( k + 1 ) , z n + 1 = z n k x n ( k + 1 ) x n c + d z n k x n ( k + 1 ) , n = 0 , 1 , 2 , ,
where k N , and the initial conditions x j , y j , z j R { 0 } for j = 0 , 1 , , k + 1 . Parameters a , b , c , d R are assumed to satisfy certain positivity or boundedness conditions to ensure a well-defined evolution of the system.
This system generalizes the class of difference equations studied in this work by incorporating an additional sequence and introducing cyclic coupling among the three variables. Such a system has the potential to exhibit significantly more intricate behavior, including higher-order periodicity. Several specific directions for future work include the following:
  • Stability and Boundedness: This encompasses investigating sufficient conditions under which the solutions of the extended system remain bounded, converge to fixed points, or exhibit asymptotic stability.
  • Exact Solutions: Attempting to derive closed-form or semi-closed-form solutions under special constraints on initial values or parameter sets will be key. This includes identifying invariant curves, symmetries, or conserved quantities.

Author Contributions

Conceptualization, M.B.; Methodology, M.B., T.R., M.G., R.A.-Z., and K.K.A.; Software, M.B.; Formal Analysis, M.B.; Validation, M.B.; Investigation, M.B., M.G., and R.A.-Z.; Resources, M.B.; Writing—Original Draft, M.B., M.G., R.A.-Z., and K.K.A.; Writing—Review and Editing, M.B., T.R., M.G., R.A.-Z., and K.K.A.; Visualization, M.B.; Supervision, M.B., T.R., M.G., R.A.-Z., and K.K.A.; Funding Acquisition, T.R. All authors have read and agreed to the published version of the manuscript.

Funding

The APC was funded by Qassim University.

Data Availability Statement

The original contributions presented in this study are included within the article. Any further inquiries may be directed to the authors.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2025).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Allen, L.; Hannigan, M.; Strauss, M. Mathematical analysis of a model for a plant-herbivore system. Bull. Math. Biol. 1993, 55, 847–864. [Google Scholar] [CrossRef]
  2. Berkal, M.; Navarro, J.F.; Hamada, M.Y.; Semmar, B. Qualitative behavior for a discretized conformable fractional-order predator–prey model. J. Appl. Math. Comput. 2025, 71, 4815–4837. [Google Scholar] [CrossRef]
  3. Berkal, M.; Almatrafi, M.B. Bifurcation and stability of two-dimensional activator–inhibitor model with fractional-order derivative. Fractal Fract. 2023, 7, 344. [Google Scholar] [CrossRef]
  4. Zhou, Z.; Zou, X. Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 2003, 16, 165–171. [Google Scholar] [CrossRef]
  5. Elaydi, S. An Introduction to Difference Equations; Springer: New York, NY, USA, 2005. [Google Scholar]
  6. Leinartas, E.K. Multiple Laurent Series and Fundamental Solutions of Linear Difference Equations. Sib. Math. J. 2007, 48, 178–191. [Google Scholar] [CrossRef]
  7. Bousquet-Mélou, M.; Petkovšek, M. Linear Recurrences with Constant Coefficients: The Multivariate Case. Discret. Math. 2000, 225, 51–75. [Google Scholar] [CrossRef]
  8. Abo-Zeid, R.; Kamal, H. Global behavior of two rational third order difference equations. Univers. J. Math. Appl. 2019, 2, 212–217. [Google Scholar] [CrossRef]
  9. El-Dessoky, M. Solution for rational systems of difference equations of order three. Mathematics 2016, 4, 53. [Google Scholar] [CrossRef]
  10. El-Dessoky, M.; Khaliq, A.; Asiri, A. On some rational systems of difference equations. J. Nonlinear Sci. Appl. 2018, 11, 49–72. [Google Scholar] [CrossRef]
  11. Elsayed, E.; Ibrahim, T. Periodicity and solutions for some systems of nonlinear rational difference equations. Hacet. J. Math. Stat. 2015, 44, 1361–1390. [Google Scholar] [CrossRef]
  12. Gumus, M. On a competitive system of rational difference equations. Univers. J. Math. Appl. 2019, 2, 224–228. [Google Scholar] [CrossRef]
  13. Halim, Y.; Khelifa, A.; Berkal, M. Representation of solutions of a two-dimensional system of difference equations. Miskolc Math. Notes 2020, 21, 203–218. [Google Scholar] [CrossRef]
  14. Ibrahim, T.; Touafek, N. Max-type system of difference equations with positive two periodic sequences. Math. Methods Appl. Sci. 2014, 37, 2562–2569. [Google Scholar] [CrossRef]
  15. Kara, M.; Yazlik, Y. Solvability of a system of nonlinear difference equations of higher order. Turk. J. Math. 2019, 43, 1533–1565. [Google Scholar] [CrossRef]
  16. Kara, M.; Yazlik, Y. On the system of difference equations x n = x n 2 y n 3 y n 1 ( a n + b n x n 2 y n 3 ) , y n = y n 2 x n 3 x n 1 ( α n + β n y n 2 x n 3 ) . J. Math. Ext. 2020, 14, 41–59. [Google Scholar]
  17. Kurbanli, A.; Cinar, C.; Yalcinkaya, I. On the behavior of positive solutions of the system of rational difference equations. Math. Comput. Model. 2011, 53, 1261–1267. [Google Scholar] [CrossRef]
  18. Stević, S.; Alghamdi, M.; Alotaibi, A.; Elsayed, E. On a Class of Solvable Higher-Order Difference Equations. Filomat 2017, 31, 461–477. [Google Scholar] [CrossRef]
  19. Chuiko, S.M.; Chuiko, E.V.; Kalinichenko, Y.V. Boundary-Value Problems for Systems of Linear Difference-Algebraic Equations. J. Math. Sci. 2021, 254, 318–333. [Google Scholar] [CrossRef]
  20. Stević, S.; Iričanin, B.; Kosmala, W.; Šmarda, Z. Note on Theoretical and Practical Solvability of a Class of Discrete Equations Generalizing the Hyperbolic-Cotangent Class. J. Inequal. Appl. 2021, 2021, 184. [Google Scholar] [CrossRef]
  21. Mkhwanazi, K.; Folly-Gbetoula, M. Symmetries and Solvability of a Class of Higher Order Systems of Ordinary Difference Equations. Symmetry 2022, 14, 108. [Google Scholar] [CrossRef]
  22. Xing, Z.; Wen, L.; Xiao, H. A Fourth-Order Conservative Difference Scheme for the Riesz Space-Fractional Sine-Gordon Equations and Its Fast Implementation. Appl. Numer. Math. 2021, 159, 221–238. [Google Scholar] [CrossRef]
  23. Alzabut, J.; Selvam, A.G.M.; Vignesh, D.; Gholami, Y. Solvability and Stability of Nonlinear Hybrid Δ-Difference Equations of Fractional-Order. Int. J. Nonlinear Sci. Numer. Simul. 2023, 24, 2263–2280. [Google Scholar] [CrossRef]
  24. Wang, W.; Xu, L.; Xu, J.; Li, X.; Zhang, H. Linear Quadratic Optimal Control for Time-Delay Stochastic System with Partial Information. Int. J. Syst. Sci. 2023, 54, 2227–2238. [Google Scholar] [CrossRef]
  25. Alayachi, H.S.; Noorani, M.S.M.; Khan, A.Q.; Almatrafi, M.B. Analytic Solutions and Stability of Sixth Order Difference Equations. Math. Probl. Eng. 2020, 2020, 1230979. [Google Scholar] [CrossRef]
  26. Sanbo, A.; Elsayed, E.M. Some properties of the solutions of the difference equation x n + 1 = α x n + b x n x n 4 c x n 3 + d x n 4 . Open J. Discret. Appl. Math. 2019, 2, 31–47. [Google Scholar] [CrossRef]
  27. Almatrafi, M.B.; Alzubaidi, M.M. Analysis of the Qualitative Behaviour of an Eighth-Order Fractional Difference Equation. Open J. Discret. Appl. Math. 2019, 2, 41–47. [Google Scholar] [CrossRef]
  28. Ahmed, A.E.S.; Iricanin, B.; Kosmala, W.; Stević, S.; Šmarda, Z. Note on constructing a family of solvable sine-type difference equations. Adv. Differ. Equ. 2021, 2021, 194. [Google Scholar] [CrossRef]
Figure 1. This figure shows the solutions of the system (8).
Figure 1. This figure shows the solutions of the system (8).
Mathematics 13 03327 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Berkal, M.; Radwan, T.; Gümüş, M.; Abo-Zeid, R.; Ahmed, K.K. Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics 2025, 13, 3327. https://doi.org/10.3390/math13203327

AMA Style

Berkal M, Radwan T, Gümüş M, Abo-Zeid R, Ahmed KK. Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics. 2025; 13(20):3327. https://doi.org/10.3390/math13203327

Chicago/Turabian Style

Berkal, Messaoud, Taha Radwan, Mehmet Gümüş, Raafat Abo-Zeid, and Karim K. Ahmed. 2025. "Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations" Mathematics 13, no. 20: 3327. https://doi.org/10.3390/math13203327

APA Style

Berkal, M., Radwan, T., Gümüş, M., Abo-Zeid, R., & Ahmed, K. K. (2025). Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics, 13(20), 3327. https://doi.org/10.3390/math13203327

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop