Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations
Abstract
1. Introduction
2. Main Results
Solutions of
- 1.
- If , then
- 2.
- If , then
- 1.
- If , then
- 2.
- If , then
- 1.
- If , then
- 2.
- If , then
- 1.
- If , thenwhere n denotes a nonzero integer.
- 2.
- If , thenwhere n denotes a nonzero integer.
3. Numerical Simulation
- State 1: , , , , and .
- State 2: and .
- State 3:
- State 4:
4. Conclusions
5. Future Work
- Stability and Boundedness: This encompasses investigating sufficient conditions under which the solutions of the extended system remain bounded, converge to fixed points, or exhibit asymptotic stability.
- Exact Solutions: Attempting to derive closed-form or semi-closed-form solutions under special constraints on initial values or parameter sets will be key. This includes identifying invariant curves, symmetries, or conserved quantities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, L.; Hannigan, M.; Strauss, M. Mathematical analysis of a model for a plant-herbivore system. Bull. Math. Biol. 1993, 55, 847–864. [Google Scholar] [CrossRef]
- Berkal, M.; Navarro, J.F.; Hamada, M.Y.; Semmar, B. Qualitative behavior for a discretized conformable fractional-order predator–prey model. J. Appl. Math. Comput. 2025, 71, 4815–4837. [Google Scholar] [CrossRef]
- Berkal, M.; Almatrafi, M.B. Bifurcation and stability of two-dimensional activator–inhibitor model with fractional-order derivative. Fractal Fract. 2023, 7, 344. [Google Scholar] [CrossRef]
- Zhou, Z.; Zou, X. Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 2003, 16, 165–171. [Google Scholar] [CrossRef]
- Elaydi, S. An Introduction to Difference Equations; Springer: New York, NY, USA, 2005. [Google Scholar]
- Leinartas, E.K. Multiple Laurent Series and Fundamental Solutions of Linear Difference Equations. Sib. Math. J. 2007, 48, 178–191. [Google Scholar] [CrossRef]
- Bousquet-Mélou, M.; Petkovšek, M. Linear Recurrences with Constant Coefficients: The Multivariate Case. Discret. Math. 2000, 225, 51–75. [Google Scholar] [CrossRef]
- Abo-Zeid, R.; Kamal, H. Global behavior of two rational third order difference equations. Univers. J. Math. Appl. 2019, 2, 212–217. [Google Scholar] [CrossRef]
- El-Dessoky, M. Solution for rational systems of difference equations of order three. Mathematics 2016, 4, 53. [Google Scholar] [CrossRef]
- El-Dessoky, M.; Khaliq, A.; Asiri, A. On some rational systems of difference equations. J. Nonlinear Sci. Appl. 2018, 11, 49–72. [Google Scholar] [CrossRef]
- Elsayed, E.; Ibrahim, T. Periodicity and solutions for some systems of nonlinear rational difference equations. Hacet. J. Math. Stat. 2015, 44, 1361–1390. [Google Scholar] [CrossRef]
- Gumus, M. On a competitive system of rational difference equations. Univers. J. Math. Appl. 2019, 2, 224–228. [Google Scholar] [CrossRef]
- Halim, Y.; Khelifa, A.; Berkal, M. Representation of solutions of a two-dimensional system of difference equations. Miskolc Math. Notes 2020, 21, 203–218. [Google Scholar] [CrossRef]
- Ibrahim, T.; Touafek, N. Max-type system of difference equations with positive two periodic sequences. Math. Methods Appl. Sci. 2014, 37, 2562–2569. [Google Scholar] [CrossRef]
- Kara, M.; Yazlik, Y. Solvability of a system of nonlinear difference equations of higher order. Turk. J. Math. 2019, 43, 1533–1565. [Google Scholar] [CrossRef]
- Kara, M.; Yazlik, Y. On the system of difference equations . J. Math. Ext. 2020, 14, 41–59. [Google Scholar]
- Kurbanli, A.; Cinar, C.; Yalcinkaya, I. On the behavior of positive solutions of the system of rational difference equations. Math. Comput. Model. 2011, 53, 1261–1267. [Google Scholar] [CrossRef]
- Stević, S.; Alghamdi, M.; Alotaibi, A.; Elsayed, E. On a Class of Solvable Higher-Order Difference Equations. Filomat 2017, 31, 461–477. [Google Scholar] [CrossRef]
- Chuiko, S.M.; Chuiko, E.V.; Kalinichenko, Y.V. Boundary-Value Problems for Systems of Linear Difference-Algebraic Equations. J. Math. Sci. 2021, 254, 318–333. [Google Scholar] [CrossRef]
- Stević, S.; Iričanin, B.; Kosmala, W.; Šmarda, Z. Note on Theoretical and Practical Solvability of a Class of Discrete Equations Generalizing the Hyperbolic-Cotangent Class. J. Inequal. Appl. 2021, 2021, 184. [Google Scholar] [CrossRef]
- Mkhwanazi, K.; Folly-Gbetoula, M. Symmetries and Solvability of a Class of Higher Order Systems of Ordinary Difference Equations. Symmetry 2022, 14, 108. [Google Scholar] [CrossRef]
- Xing, Z.; Wen, L.; Xiao, H. A Fourth-Order Conservative Difference Scheme for the Riesz Space-Fractional Sine-Gordon Equations and Its Fast Implementation. Appl. Numer. Math. 2021, 159, 221–238. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; Vignesh, D.; Gholami, Y. Solvability and Stability of Nonlinear Hybrid Δ-Difference Equations of Fractional-Order. Int. J. Nonlinear Sci. Numer. Simul. 2023, 24, 2263–2280. [Google Scholar] [CrossRef]
- Wang, W.; Xu, L.; Xu, J.; Li, X.; Zhang, H. Linear Quadratic Optimal Control for Time-Delay Stochastic System with Partial Information. Int. J. Syst. Sci. 2023, 54, 2227–2238. [Google Scholar] [CrossRef]
- Alayachi, H.S.; Noorani, M.S.M.; Khan, A.Q.; Almatrafi, M.B. Analytic Solutions and Stability of Sixth Order Difference Equations. Math. Probl. Eng. 2020, 2020, 1230979. [Google Scholar] [CrossRef]
- Sanbo, A.; Elsayed, E.M. Some properties of the solutions of the difference equation . Open J. Discret. Appl. Math. 2019, 2, 31–47. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Alzubaidi, M.M. Analysis of the Qualitative Behaviour of an Eighth-Order Fractional Difference Equation. Open J. Discret. Appl. Math. 2019, 2, 41–47. [Google Scholar] [CrossRef]
- Ahmed, A.E.S.; Iricanin, B.; Kosmala, W.; Stević, S.; Šmarda, Z. Note on constructing a family of solvable sine-type difference equations. Adv. Differ. Equ. 2021, 2021, 194. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berkal, M.; Radwan, T.; Gümüş, M.; Abo-Zeid, R.; Ahmed, K.K. Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics 2025, 13, 3327. https://doi.org/10.3390/math13203327
Berkal M, Radwan T, Gümüş M, Abo-Zeid R, Ahmed KK. Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics. 2025; 13(20):3327. https://doi.org/10.3390/math13203327
Chicago/Turabian StyleBerkal, Messaoud, Taha Radwan, Mehmet Gümüş, Raafat Abo-Zeid, and Karim K. Ahmed. 2025. "Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations" Mathematics 13, no. 20: 3327. https://doi.org/10.3390/math13203327
APA StyleBerkal, M., Radwan, T., Gümüş, M., Abo-Zeid, R., & Ahmed, K. K. (2025). Closed-Form Solutions of a Nonlinear Rational Second-Order Three-Dimensional System of Difference Equations. Mathematics, 13(20), 3327. https://doi.org/10.3390/math13203327

