Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers
Abstract
:1. Introduction
2. Notation and Models
2.1. Cure Model
2.2. Measurement Error Model
3. Methodology
3.1. Construction of the Error-Corrected Likelihood Function
3.2. Estimation of Parameters and Functions
- Step 1:
- Choose an initial value for and , and denote them by and .
- Step 2:
- For , given and , , update by finding
- Step 3:
- For , given and , update by finding
- Step 4:
- Repeat Steps 2 and 3 until convergence, and let and denote the limit of and as .
3.3. Estimation of ROC and AUC
3.3.1. Time-Independent AUC
3.3.2. Time-Dependent AUC
- (a)
- For the time-independent result in Section 3.3.1,
- (b)
- (a)
- For the time-independent result in Section 3.3.1,
- (b)
- For the time-dependent result in Section 3.3.2,
4. Numerical Studies
5. Summary
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Theoretical Justification
Appendix A.1. Regularity Conditions
- (C1)
- is a compact set, and the true parameter value is an interior point of .
- (C2)
- Let be the finite maximum support of the failure time.
- (C3)
- are independent and identically distributed for .
- (C4)
- The covariates or biomarkers are bounded.
- (C5)
- Censoring time is noninformative. That is, the failure time and the censoring time are independent, given the covariate .
Appendix A.2. Proof of Theorem 1
Appendix A.3. Proof of Theorem 2
- (a)
- , where Z is a tight random element;
- (b)
- The map is Fréchet differentiable at with a continuously invertible derivative , where denotes an operator of the derivative of f with respect to x;
- (c)
- , and satisfies .
- Check Condition (a):
- Check Condition (b):
- Check Condition (c):
Appendix A.4. Proof of Theorem 3
- Proof of part (a)
- Proof of part (b)
Appendix A.5. Proof of Theorem 4
- Proof of part (a)
- Step 1: Examine
- Step 2: Examine
- Proof of part (b)
References
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Lu, W.; Ying, Z. On semiparametric transformation cure models. Biometrika 2004, 91, 331–343. [Google Scholar] [CrossRef]
- Chen, C.-M.; Shen, P.-S.; Wei, J.C.-C.; Lin, L. A semiparametric mixture cure survival model for left-truncated and right-censored data. Biom. J. 2017, 59, 270–290. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V.; Legrand, C. The single-index/Cox mixture cure model. Biometrics 2019, 75, 452–462. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V. Cure models in survival analysis. Annu. Rev. Stat. Its Appl. 2018, 5, 311–342. [Google Scholar] [CrossRef]
- Bertrand, A.; Legrand, C.; Carroll, R.J.; Meester, C.D.; Keilegom, I.V. Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach. Biometrika 2017, 104, 31–50. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, G. Cure rate model with mismeasured covariates under transformation. J. Am. Stat. Assoc. 2008, 103, 743–756. [Google Scholar] [CrossRef]
- Chen, L.-P. Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error. Stat. Probab. Lett. 2019, 154, 108547. [Google Scholar] [CrossRef]
- Beyene, K.M.; El Ghouch, A. Smoothed time-dependent receiver operating characteristic curve for right censored survival data. Stat. Med. 2020, 39, 3373–3396. [Google Scholar] [CrossRef]
- Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef]
- Li, L.; Greene, T.; Hu, B. A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data. Stat. Methods Med. Res. 2018, 27, 2264–2278. [Google Scholar] [CrossRef]
- Song, X.; Zhou, X.-H. A semiparametric approach for the covariate specific roc curve with survival outcome. Stat. Sin. 2008, 18, 947–965. [Google Scholar]
- Zhang, Y.; Han, X.; Shao, Y. The ROC of Cox proportional hazards cure models with application in cancer studies. Lifetime Data Anal. 2021, 27, 195–215. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V.; Han, B. Assessing cure status prediction from survival data using receiver operating characteristic curves. Biometrika 2021, 108, 727–740. [Google Scholar] [CrossRef]
- Kolamunnage-Dona, R.; Kamarudin, A.N. Adjustment for the measurement error in evaluating biomarker performances at baseline for future survival outcomes: Time-dependent receiver operating characteristic curve within a joint modelling framework. Res. Methods Med. Health Sci. 2021, 2, 51–60. [Google Scholar] [CrossRef]
- Crowther, M.J.; Lambert, P.C.; Abrams, K.R. Adjusting for measurement error in baseline prognostic biomarkers included in a time-to-event analysis: A joint modelling approach. BMC Med. Res. Methodol. 2013, 13, 146. [Google Scholar] [CrossRef]
- Nevo, D.; Zucker, D.M.; Tamimic, R.M.; Wang, M. Accounting for measurement error in biomarker data and misclassification of subtypes. Stat. Med. 2016, 35, 5686–5700. [Google Scholar] [CrossRef]
- Mao, M.; Wang, J.-L. Semiparametric efficient estimation for a class of generalized proportional odds cure models. J. Am. Stat. 2010, 105, 302–311. [Google Scholar] [CrossRef]
- Chen, L.-P. Semiparametric estimation for the transformation model with length-biased data and covariate measurement error. J. Stat. Comput. Simul. 2020, 90, 420–442. [Google Scholar] [CrossRef]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Model; CRC Press: New York, NY, USA, 2006. [Google Scholar]
- Chen, L.-P.; Yi, G.Y. Semiparametric estimation methods for left-truncated and right-censored survival data with covariate measurement error. Ann. Inst. Stat. Math. 2021, 73, 481–517. [Google Scholar] [CrossRef]
- Elandt-Johnson, R.C.; Johnson, N.L. Survival Models and Data Analysis; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Chen, L.-P.; Yi, G.Y. Analysis of noisy survival data with graphical proportional hazards measurement error models. Biometrics 77, 956–969. [CrossRef]
- Hunter, D.R.; Lange, K. Computing estimates in the proportional odds model. Ann. Inst. Stat. Math. 2002, 54, 155–168. [Google Scholar] [CrossRef]
- Zheng, Y.; Cai, T.; Feng, Z. Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. Biometrics 2006, 62, 279–287. [Google Scholar] [CrossRef]
- Carroll, R.J.; Spiegelman, C.H.; Lan, K.K.G.; Bailey, K.T.; Abbot, R.D. On errors-in-variables for binary regression model. Biometrika 1984, 71, 19–25. [Google Scholar] [CrossRef]
- Webb, A.; Ma, J. Cox models with time-varying covariates and partly-interval censoring—A maximum penalised likelihood approach. Stat. Med. 2023, 42, 815–833. [Google Scholar] [CrossRef]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Kim, J.P.; Lu, W.; Sit, T.; Ying, Z. A unified approach to semiparametric transformation models under general biased sampling schemes. J. Am. Stat. Assoc. 2013, 108, 217–227. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes; Springer: New York, NY, USA, 1996. [Google Scholar]
- Su, Y.-R.; Wang, J.-L. Modeling left-truncated and right-censored survival data with longitudinal covariates. Ann. Stat. 2012, 40, 1465–1488. [Google Scholar] [CrossRef]
- Durrett, R. Probability: Theory and Examples; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 1948, 19, 293–325. [Google Scholar] [CrossRef]
Parameter | Methods | |||||||
---|---|---|---|---|---|---|---|---|
Bias | S.E. | MSE | Bias | S.E. | MSE | |||
0.15 | Naive | 0.163 | 0.308 | 0.121 | 0.159 | 0.230 | 0.078 | |
Proposed | 0.012 | 0.325 | 0.106 | 0.009 | 0.238 | 0.057 | ||
Naive | 0.170 | 0.231 | 0.082 | 0.165 | 0.208 | 0.070 | ||
Proposed | 0.018 | 0.266 | 0.071 | 0.013 | 0.220 | 0.049 | ||
Naive | 0.108 | 0.033 | 0.013 | 0.096 | 0.030 | 0.010 | ||
Proposed | 0.014 | 0.056 | 0.003 | 0.007 | 0.047 | 0.002 | ||
Naive | 0.115 | 0.051 | 0.016 | 0.108 | 0.047 | 0.014 | ||
Proposed | 0.016 | 0.060 | 0.004 | 0.013 | 0.057 | 0.003 | ||
Naive | 0.114 | 0.049 | 0.015 | 0.103 | 0.041 | 0.012 | ||
Proposed | 0.013 | 0.062 | 0.004 | 0.009 | 0.056 | 0.003 | ||
0.35 | Naive | 0.195 | 0.321 | 0.141 | 0.178 | 0.255 | 0.097 | |
Proposed | 0.020 | 0.345 | 0.119 | 0.017 | 0.269 | 0.073 | ||
Naive | 0.195 | 0.264 | 0.108 | 0.181 | 0.229 | 0.085 | ||
Proposed | 0.023 | 0.281 | 0.080 | 0.020 | 0.245 | 0.060 | ||
Naive | 0.125 | 0.047 | 0.018 | 0.114 | 0.042 | 0.015 | ||
Proposed | 0.017 | 0.060 | 0.004 | 0.014 | 0.055 | 0.003 | ||
Naive | 0.123 | 0.060 | 0.019 | 0.112 | 0.055 | 0.016 | ||
Proposed | 0.020 | 0.071 | 0.005 | 0.017 | 0.066 | 0.005 | ||
Naive | 0.121 | 0.054 | 0.018 | 0.116 | 0.050 | 0.016 | ||
Proposed | 0.019 | 0.069 | 0.005 | 0.016 | 0.063 | 0.004 | ||
0.55 | Naive | 0.214 | 0.348 | 0.167 | 0.193 | 0.285 | 0.118 | |
Proposed | 0.027 | 0.362 | 0.132 | 0.023 | 0.307 | 0.095 | ||
Naive | 0.226 | 0.287 | 0.133 | 0.201 | 0.266 | 0.111 | ||
Proposed | 0.028 | 0.301 | 0.091 | 0.025 | 0.278 | 0.078 | ||
Naive | 0.133 | 0.066 | 0.022 | 0.128 | 0.059 | 0.020 | ||
Proposed | 0.021 | 0.078 | 0.006 | 0.019 | 0.069 | 0.005 | ||
Naive | 0.136 | 0.068 | 0.023 | 0.124 | 0.063 | 0.019 | ||
Proposed | 0.026 | 0.079 | 0.007 | 0.024 | 0.074 | 0.006 | ||
Naive | 0.134 | 0.060 | 0.022 | 0.128 | 0.057 | 0.020 | ||
Proposed | 0.025 | 0.066 | 0.005 | 0.021 | 0.069 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-P. Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics 2025, 13, 424. https://doi.org/10.3390/math13030424
Chen L-P. Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics. 2025; 13(3):424. https://doi.org/10.3390/math13030424
Chicago/Turabian StyleChen, Li-Pang. 2025. "Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers" Mathematics 13, no. 3: 424. https://doi.org/10.3390/math13030424
APA StyleChen, L.-P. (2025). Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics, 13(3), 424. https://doi.org/10.3390/math13030424