Time-Synchronized Fault-Tolerant Control for Robotic Manipulators
Abstract
:1. Introduction
- Compared to [21,22,23], we propose a time-synchronized control method that reduces the complexity of the controller’s structure and relaxes the criteria for establishing synchronization and cross-coupling errors. Unlike the fixed-time control approaches in [11,12,13,14,15], our method ensures that the variables across all system state degrees converge to an equilibrium simultaneously within a fixed period, regardless of the initial circumstances. The proposed method can pave the way for further investigation sof the robotic time-synchronization problem.
- A time-synchronized observer is proposed to manage lumped uncertainties, including system faults, external disturbances, and system uncertainties (EDSU). This observer not only estimates uncertainty precisely within a finite timeframe, enhancing tracking accuracy, but is also well integrated into the TS control framework. Consequently, high-precision tracking and robust performance are achieved, even in the face of actuator faults.
2. Preliminaries
- (1)
- the equilibrium is finite-time stable;
- (2)
- x shows ratio persistence.
- (1)
- The equilibrium shows fixed-time stability;
- (2)
- x is ratio-persistent.
3. Main Results
3.1. Problem Description
3.2. Time-Synchronized Observer Design
3.3. Time-Synchronized Fault-Tolerant Control Design
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Zhao, L. Distributed adaptive gain-varying finite-time event-triggered control for multiple robot manipulators with disturbances. IEEE Trans. Ind. Inf. 2023, 19, 9302–9313. [Google Scholar] [CrossRef]
- Petrov, P.; Kralov, I. Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots. Mathematics 2024, 13, 1. [Google Scholar] [CrossRef]
- Zhang, M.; Tong, W.; Li, P.; Hou, Y.; Xu, X.; Zhu, L. Robust neural dynamics method for redundant robot manipulator control with physical constraints. IEEE Trans. Ind. Inf. 2023, 19, 11721–11729. [Google Scholar] [CrossRef]
- Maiti, R.; Sharma, K.; Sarkar, G. Linear consequence-based fuzzy parallel distributed compensation type l1 adaptive controller for two link robot manipulator. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 3978–3990. [Google Scholar] [CrossRef]
- Xu, S.; He, B. Robust adaptive fuzzy fault tolerant control of robot manipulators with unknown parameters. IEEE Trans. Fuzzy Syst. 2023, 31, 3081–3092. [Google Scholar] [CrossRef]
- Kang, E.; Qiao, H.; Chen, Z.; Gao, J. Tracking of uncertain robotic manipulators using event-triggered model predictive control with learning terminal cost. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2801–2815. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, Q.; Li, H.; Lu, R. Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Trans. Cybern. 2021, 52, 12905–12915. [Google Scholar] [CrossRef]
- Saied, H.; Chemori, A.; Bouri, M.; Rafei, M.E.; Francis, C. Feedforward super-twisting sliding mode control for robotic manipulators: Application to pkms. IEEE Trans. Robot 2023, 39, 3167–3184. [Google Scholar] [CrossRef]
- Golestani, M.; Chhabra, R.; Esmaeilzadeh, M. Finite-time nonlinear h-∞ control of robot manipulators with prescribed performance. IEEE Control Syst. Lett. 2023, 7, 1363–1368. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Z.; Fu, T. Varying-parameter rnn activated by finite-time functions for solving joint-drift problems of redundant robot manipulators. IEEE Trans. Ind. Inf. 2018, 14, 5359–5367. [Google Scholar] [CrossRef]
- He, W.; Kang, F.; Kong, L.; Feng, Y.; Cheng, G.; Sun, C. Vibration control of a constrained two link flexible robotic manipulator with fixed-time convergence. IEEE Trans. Cybern. 2021, 52, 5973–5983. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Sun, L.; Jiang, J.; Zuo, Z. Reinforcement learning-based fixed-time trajectory tracking control for uncertain robotic manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 4584–4595. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Tang, D.; Hou, Y.; Wang, Y. Adaptive fixed-time fault-tolerant tracking control and its application for robot manipulators. IEEE Trans. Ind. Electron. 2022, 69, 2956–2966. [Google Scholar] [CrossRef]
- Jin, J.; Chen, W.; Chen, C.; Chen, L.; Tang, Z.; Chen, L.; Wu, L.; Zhu, C. A predefined fixed-time convergence znn and its applications to time-varying quadratic programming solving and dual-arm manipulator cooperative trajectory tracking. IEEE Trans. Ind. Inf. 2023, 19, 8691–8702. [Google Scholar] [CrossRef]
- Yang, P.; Su, Y. Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators. IEEE/ASME Trans. Mechatronics 2022, 27, 3275–3285. [Google Scholar] [CrossRef]
- Van, M.; Sun, Y.; Mcllvanna, S.; Nguyen, M.-N.; Khyam, M.O.; Ceglarek, D. Adaptive fuzzy fault tolerant control for robot manipulators with fixed-time convergence. IEEE Trans. Fuzzy Syst. 2023, 31, 3210–3219. [Google Scholar] [CrossRef]
- Van, M.; Ge, S.S. Adaptive fuzzy integral sliding-mode control for robust fault-tolerant control of robot manipulators with disturbance observer. IEEE Trans. Fuzzy Syst. 2021, 29, 1284–1296. [Google Scholar] [CrossRef]
- Li, K.; Li, Y. Adaptive nn optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 947–957. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.S.; Lee, T.H. Simultaneous arrival to origin convergence: Sliding-mode control through the norm-normalized sign function. IEEE Trans. Autom. Control 2022, 67, 1966–1972. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, H.; Gan, L.; Hua, C.; Li, J. Fixed-time composite neural learning control of flexible telerobotic systems. IEEE Trans. Cybern. 2023, 54, 3602–3614. [Google Scholar] [CrossRef]
- Yu, T.; Cao, J.; Rutkowski, L.; Luo, Y.-P. Finite-time synchronization of complex-valued memristive-based neural networks via hybrid control. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3938–3947. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Qi, F.; Lai, Q.; Iu, H.H. Fixed time synchronization control for bilateral teleoperation mobile manipulator with nonholonomic constraint and time delay. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 3452–3456. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Z.; Yu, J.; Huang, P.; Ma, Z. Adaptive practical fixed-time synchronization control for bilateral teleoperation system with prescribed performance. IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 1243–1247. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Lu, R.; Zuo, Z.; Li, X. An overview of finite/fixed-time control and its application in engineering systems. IEEE/CAA J. Autom. Sin. 2022, 9, 2106–2120. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, J.; Sun, C. Time-synchronized control for an uncertain marine vessel system with external disturbance. IEEE Trans. Circuits Syst. II Exp. Briefs 2023, 70, 2929–2933. [Google Scholar] [CrossRef]
- Wang, S.; Su, C.; Chang, J.; Dai, H.; Li, J. Scaled p-norm and its application in fast time-synchronized control. IET Control Theory Appl. 2023, 17, 2215–2226. [Google Scholar] [CrossRef]
- Wang, N.; Karimi, H.R.; Li, H.; Su, S. Accurate trajectory tracking of disturbed surface vehicles: A finite-time control approach. IEEE/ASME Trans. Mechatronics 2019, 24, 1064–1074. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
2 | ||
0.85 | ||
0.35 | ||
0.31 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, G.; Chen, R.; Zhang, J.; Zhang, T. Time-Synchronized Fault-Tolerant Control for Robotic Manipulators. Mathematics 2025, 13, 507. https://doi.org/10.3390/math13030507
Wang D, Zhang G, Chen R, Zhang J, Zhang T. Time-Synchronized Fault-Tolerant Control for Robotic Manipulators. Mathematics. 2025; 13(3):507. https://doi.org/10.3390/math13030507
Chicago/Turabian StyleWang, Duansong, Gang Zhang, Rui Chen, Jinzhong Zhang, and Tan Zhang. 2025. "Time-Synchronized Fault-Tolerant Control for Robotic Manipulators" Mathematics 13, no. 3: 507. https://doi.org/10.3390/math13030507
APA StyleWang, D., Zhang, G., Chen, R., Zhang, J., & Zhang, T. (2025). Time-Synchronized Fault-Tolerant Control for Robotic Manipulators. Mathematics, 13(3), 507. https://doi.org/10.3390/math13030507