Optimal Weighted Markov Model and Markov Optimal Weighted Combination Model with Their Application in Hunan’s Gross Domestic Product
Abstract
:1. Introduction
- (1)
- The OWMKM model is developed using the PSO algorithm to determine the optimal order of the FGM model while minimizing mean relative errors.
- (2)
- According to the Markov transition probability matrix and state division, we formulate precise expressions for the estimated and predicted values of the OWMKM model and MKMOWM model.
- (3)
- The proposed model’s validity is confirmed through numerical examples and its application in forecasting Hunan’s annual GDP. Our model’s results are compared with those of the ARIMA model and the Nonlinear Auto Regressive Model (NAR), with the robustness of each assessed using the statistics and STD.
- (4)
- We have validated that the proposed model can more accurately and effectively evaluate the development level of Hunan’s annual GDP compared to the optimal weighted combination model.
2. The Optimal Weighted Markov Model
2.1. The QFR Model
2.2. The FGM Model
2.2.1. R-Order Cumulative Generation
2.2.2. Construct a Whitening Differential Equation
2.2.3. Solve the Equation and Obtain the Predicted Value
2.3. Combination Model
2.4. Markov Model
2.4.1. Status Division
2.4.2. State Transition Probability Matrix
2.5. Determination of Predicted Values
2.6. Model Test Statistics
3. Empirical Research and Result Analysis
3.1. Experiment of QFR Model
3.2. Application of FGM Model
3.3. Application of OWM Model
3.4. Hunan’s GDP Analysis of OWMKM
3.4.1. Construct Transition Matrix
3.4.2. Forecast Hunan’s GDP
3.5. Comparative Analysis of the Results of Each Model
4. Research on the Prediction of Hunan’s GDP Based on MKMOWM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; Bowker-Saur: London, UK, 2014. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- Pierre, P.; Tatsuma, W. Let’s Take a Break: Trends and Cycles in US Real GDP. J. Monet. Econ. 2009, 56, 749–765. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z. Time Series Analysis of China’s per capita GDP (1952–2002). Stat. Dec. 2005, 4, 61–62. [Google Scholar] [CrossRef]
- He, X.Y. The China’s GDP Growth Forecast based on Time Series Model. Theory Pract. Financ. Econ. 2012, 33, 96–99. [Google Scholar]
- Gui, L.W.; Han, Z.Z. The Quarter Seasonally Adjusted GDP in China Based on State Space Model. J. Quant. Tech. Econ. 2011, 7, 77–89. [Google Scholar] [CrossRef]
- Gladston, A.; Sharmaa, I.A.; Bagirathan, S.S.K.G. Regression Approach for GDP Prediction Using Multiple Features From Macro-Economic Data. Int. J. Softw. Sci. Comput. Intell. 2022, 14, 1–14. [Google Scholar] [CrossRef]
- Srebro, B.; Mavrenski, B.; Bogojević Arsić, V.; Knežević, S.; Milašinović, M.; Travica, J. Bankruptcy Risk Prediction in Ensuring the Sustainable Operation of Agriculture Companies. Sustainability 2021, 13, 7712. [Google Scholar] [CrossRef]
- Wang, J.S.; Shi, W. Research on the Compilation of Land Resources Balance Sheet Under the Background of Ecological Civilization. Stat. Dec. 2021, 23, 36–40. [Google Scholar] [CrossRef]
- Geng, P.; Qi, H.Q. Forecasting and Assessment of China’s Quarterly Real-time GDP. Stat. Res. 2012, 29, 8–14. [Google Scholar] [CrossRef]
- Wang, W.; Yu, G.Y. Short-term prediction of quarterly GDP in China based on MIDAS regression model. J. Quant. Tech. Econ. 2016, 33, 108–125. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.H.; Wang, J.H. GDP Prediction Based on Independent Recurrent Neural Network Method. Stat. Dec. 2020, 14, 24–28. [Google Scholar] [CrossRef]
- Zhang, X.X.; Feng, Z.X. Spatial Correlation and Regional Convergence in per-capita GDP in China: 1978–2003. China Econ. Q. 2008, 2, 399–414. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Yu, C.L.; Li, H.T. Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach. Econ. Stat. 2022, 24, 75–93. [Google Scholar] [CrossRef]
- Chu, B.; Qureshi, S. Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth. Comput. Econ. 2022, 62, 1567–1609. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y. GDP Economic Forecasting Model Based on Improved RBF Neural Network. Math. Probl. Eng. 2022, 2022, 7630268. [Google Scholar] [CrossRef]
- Coulombe, P.G.; Leroux, M.; Stevanovic, D. How is Machine Learning Useful for Macroeconomic Forecasting? arXiv 2020. [Google Scholar] [CrossRef]
- Wang, F.X. Forecast on GDP of Kashi Region Based on Weight Changeable Combination Forecast Model. Math. Pract. Theory 2013, 43, 147–151. [Google Scholar] [CrossRef]
- Tian, Z.C.; Liu, M. Empirical study of GDP forecasting based on improved grey GM(1,1) model. Stat. Dec. 2018, 11, 83–85. [Google Scholar] [CrossRef]
- Gai, W.Q.; Jiang, Z.W.; Ding, T. Empirical Analysis on the difference research of Regional economic Development in our country’s per capita GDP Development Trend 1978–2008. Econ. Pers 2010, 9, 85–90. Available online: https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjUwMTE2MTYzNjE0Eg5qanhkdDIwMTAwOTAxOBoIM3Jvc2IzNzU%3D (accessed on 26 January 2025).
- Zhang, H.P.; Chen, Q.H. GDP forecast based on the constant dimension new interest supplementary GM(1,1) power model. Stat. Dec. 2017, 21, 68–70. [Google Scholar] [CrossRef]
- Wu, W.Z.; Zhang, T.; Zheng, C.L. A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP. Complexity 2019, 2019, 1731262. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Yan, S.L.; Liu, D.L. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Ma, X.; Xie, M.; Wu, W.Q.; Zeng, B.; Wang, Y.; Wu, X. The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Modell. 2019, 70, 402–424. [Google Scholar] [CrossRef]
- Wu, W.Q.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renew. Energy 2019, 40, 70–87. [Google Scholar] [CrossRef]
- Mao, S.H.; Gao, M.Y.; Xiao, X.P.; Zhu, M. A novel fractional grey system model and its application. Appl. Math. Modell. 2016, 40, 5063–5076. [Google Scholar] [CrossRef]
- Mao, S.H.; Kang, Y.X.; Zhang, Y.H. Fractional grey model based on non-singular exponential kernel and its application in the prediction of electronic waste precious metal content. ISA Trans. 2020, 107, 12–26. [Google Scholar] [CrossRef]
- Kang, Y.X.; Mao, S.H.Y.; Zhang, H. Variable order fractional grey model and its application. Appl. Math. Model. 2021, 97, 619–635. [Google Scholar] [CrossRef]
- Xie, W.L.; Wu, W.Z.; Liu, C.; Mark, G. Generalized fractional grey system models: The memory effects perspective. ISA Trans. 2022, 126, 36–46. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Qu, C.; Zhang, K.Q. A hybrid method based on singular spectrum analysis, firefly algorithm, and BP neural network for short-term wind speed forecasting. Energies 2016, 9, 757. [Google Scholar] [CrossRef]
- Wang, L.; Zhan, L.; Li, R. Prediction of the energy demand trend in middle Africa-A comparison of MGM, MECM, ARIMA and BP models. Sustainability 2019, 11, 2436. [Google Scholar] [CrossRef]
- Lu, S.B. Research on GDP Forecast Analysis Combining BP Neural Network and ARIMA Model. Comput. Intell. Neurosci. 2021, 2021, 1026978. [Google Scholar] [CrossRef]
- Long, H.D.; Yan, G.L. Research on GDP Time Series Forecasting based on Integrating SARIMA, GM(1,1) and BP neural networks. J. Appl. Stat. Manag. 2013, 32, 814–822. [Google Scholar] [CrossRef]
- Peng, N.C.; Dang, T. Based on ARMA-GM-BP combination prediction model and its application. Stat. Dec. 2016, 2, 80–82. [Google Scholar] [CrossRef]
- Tang, X.W. Optimal combination forecasting method and its Application. J. Appl. Stat. Manag. 1992, 1, 31–35. [Google Scholar] [CrossRef]
- Hamilton, J.D. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Kim, C.J.; Nelson, C.R. State-Space Models with Regime Switching. In Classical and Gibbs-Sampling Approaches with Applications; MIT: Cambridge, UK, 1999. [Google Scholar]
- Kappe, E.; Blank, A.S.; Desarbo, W.S. A random coefficients mixture hidden Markov model for marketing research. Int. J. Res. Mark. 2018, 35, 415–431. [Google Scholar] [CrossRef]
- Zhao, N.B.; Yang, J.; Li, S.Y.; Sun, Y.W. A GM (1,1) Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature. Math. Probl. Eng. 2014, 2014, 832851. [Google Scholar] [CrossRef]
- Matsuoka, K. A framework for variance analysis of customer equity based on a Markov chain model. J. Bus. Res. 2021, 129, 57–69. [Google Scholar] [CrossRef]
- Fan, W.C.; Jiang, Y.; Huang, S.Y.; Liu, W.G. Research and prediction of opioid crisis based on BP neural network and Markov chain. AIMS Math. 2019, 4, 1357–1368. [Google Scholar] [CrossRef]
- Souissi, A.; Soueidy, E.G.; Rhaima, M. Clustering property for quantum Markov chains on the comb graph. AIMS Math. 2023, 8, 7865–7880. [Google Scholar] [CrossRef]
- Lin, Y.H.; Liu, H.Y. Inverse problems for fractional equations with a minimal number of measurements. Commun. Anal. Comput. 2023, 1, 72–93. [Google Scholar] [CrossRef]
- Yao, Y.; Yuan, J.; Chen, T.; Zhang, C.; Yang, H. Adaptive Neural Control for a Class of Random Fractional-Order Mul-ti-Agent Systems with Markov Jump Parameters and Full State Constraints. Fractal Fract. 2024, 8, 278–298. [Google Scholar] [CrossRef]
- Parivallal, A.; Sakthivel, R.; Amsaveni, R.; Alzahrani, F.; Alshomrani, A.S. Observer-based memory consensus for nonlinear multi-agent systems with output quantization and Markov switching topologies. Phys. A Stat. Mech. Appl. 2020, 551, 123949. [Google Scholar] [CrossRef]
- Dragan, V.; Shi, P.; Boukas, E.K. Control of singularly perturbed systems with Markovian jump parameters: An H∞ approach. Automatica 1999, 35, 1369–1378. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö.Ö.; Ibrahim, B. Chaos, Fractionality, Nonlinear Contagion, and Causality Dynamics of the Metaverse, Energy Consumption, and Environmental Pollution: Markov-Switching Generalized Autoregressive Conditional Heteroske-dasticity Copula and Causality Methods. Fractal Fract. 2024, 8, 114–135. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Xiao, Q.; Goh, M. A novel method for carbon emission forecasting based on Gompertz’s law and fractional grey model: Evidence from American industrial sector. Renew. Energy 2022, 181, 803–819. [Google Scholar] [CrossRef]
QFR | FGM | OWM | |||||
---|---|---|---|---|---|---|---|
Year | Raw | Predicted Value | Relative Error | Predicted Value | Relative Error | Predicted Value | Relative Error |
2000 | 3551.49 | 2645.76 | −0.2553 | 3551.49 | 0 | 2206.2 | −0.3788 |
2001 | 3831.90 | 3387.11 | −0.1660 | 4292.65 | 0.1202 | 2947.64 | −0.2308 |
2002 | 4151.54 | 4263.08 | 0.0269 | 5221.38 | 0.2577 | 3798.01 | −0.0852 |
2003 | 4659.95 | 5273.66 | 0.1317 | 6260.52 | 0.3435 | 4794.73 | 0.0289 |
2004 | 5542.62 | 6418.87 | 0.1581 | 7402.21 | 0.3355 | 5941.65 | 0.0720 |
2005 | 6369.87 | 7698.70 | 0.2086 | 8650.29 | 0.3580 | 7236.89 | 0.1361 |
2006 | 7431.55 | 9113.14 | 0.2263 | 10,012.49 | 0.3473 | 8676.68 | 0.1675 |
2007 | 9285.45 | 10,662.21 | 0.1483 | 11,498.52 | 0.2383 | 10,256.34 | 0.1046 |
2008 | 11,307.36 | 12,345.9 | 0.0918 | 13,119.55 | 0.1603 | 11,970.44 | 0.0586 |
2009 | 12,772.80 | 14,164.20 | 0.1089 | 14,888.03 | 0.1656 | 13,812.92 | 0.0814 |
2010 | 15,574.32 | 16,117.13 | 0.0349 | 16,817.67 | 0.0798 | 15,777.15 | 0.0130 |
2011 | 18,914.96 | 18,204.68 | −0.0376 | 18,923.54 | 0.0005 | 17,855.81 | −0.056 |
2012 | 21,207.23 | 20,426.85 | −0.0368 | 21,222.13 | 0.0007 | 20,040.89 | −0.0550 |
2013 | 23,545.24 | 22,783.63 | −0.0323 | 23,731.44 | 0.0079 | 22,323.65 | −0.0519 |
2014 | 25,881.28 | 25,275.04 | −0.0234 | 26,471.20 | 0.0228 | 24,694.53 | −0.0459 |
2015 | 28,538.60 | 27,901.07 | −0.0223 | 29,462.92 | 0.0324 | 27,143.09 | −0.0489 |
2016 | 30,853.45 | 30,661.72 | −0.0062 | 32,730.13 | 0.0608 | 29,657.9 | −0.0387 |
RMSE | 922.83 | RMSE | 1499 | RMSE | 984.02 | ||
MAPE | 0.098 | MAPE | 0.1489 | MAPE | 0.0973 | ||
STD | 7.73% | STD | 13.39% | STD | 8.81% | ||
0.9888 | 0.9721 | 0.9869 | |||||
2017 | 34,590.60 | 33,556.99 | −0.0299 | 36,298.55 | 0.0494 | 32,226.49 | −0.0683 |
2018 | 36,425.78 | 36,586.87 | 0.0044 | 40,196.25 | 0.1035 | 34,835.21 | −0.0437 |
2019 | 39,752.10 | 39,751.38 | 0 | 44,453.94 | 0.1183 | 37,469.19 | −0.0574 |
2020 | 41,781.49 | 43,050.51 | 0.0304 | 49,105.14 | 0.1753 | 40,112.15 | −0.0400 |
2021 | 46,063.09 | 46,484.25 | 0.0091 | 54,186.5 | 0.1764 | 42,746.29 | −0.0720 |
2022 | 48,670.37 | 50,052.62 | 0.0284 | 59,738.09 | 0.2274 | 45,593.14 | −0.0400 |
2023 | 50,012.85 | 53,755.60 | 0.0748 | 65,803.65 | 0.3157 | 48,233.97 | −0.0720 |
RMSE | 1638.9 | RMSE | 8707.2 | RMSE | 2383 | ||
MAPE | 0.0253 | MAPE | 0.1666 | MAPE | 0.0543 | ||
STD | 2.34% | STD | 8.12% | STD | 1.35% | ||
0.9417 | 0.5045 | 0.8222 |
Year | Initial State | Transfer Steps | ||||||
---|---|---|---|---|---|---|---|---|
2016 | 4 | 1 | 0 | 0 | 0 | 0.8570 | 0.1430 | |
2015 | 4 | 2 | 0 | 0 | 0 | 0.7583 | 0.2417 | |
2014 | 4 | 3 | 0 | 0 | 0 | 0.6903 | 0.3097 | |
2013 | 4 | 4 | 0 | 0 | 0 | 0.6433 | 0.3567 | |
2012 | 4 | 5 | 0 | 0 | 0 | 0.6109 | 0.3891 | |
Total | 0 | 0 | 0 | 3.5598 | 1.4402 |
OWM | ARIMA | OWMKM | ||||||
---|---|---|---|---|---|---|---|---|
Year | Raw | Predicte Value | Relative Error | Station Value | Predicte Value | Relative Error | Predicted Value | Relative Error |
2000 | 3551.49 | 2206.20 | −0.3788 | 1 | 3549.90 | −0.0004 | 3359.26 | −0.0541 |
2001 | 3831.90 | 2947.64 | −0.2308 | 2 | 3836.03 | 0.0011 | 3826.86 | −0.0013 |
2002 | 4151.54 | 3798.01 | −0.0852 | 3 | 4117.36 | −0.0082 | 4297.6 | 0.0352 |
2003 | 4659.95 | 4794.73 | 0.0289 | 4 | 4495.76 | −0.0352 | 4807.95 | 0.0318 |
2004 | 5542.62 | 5941.65 | 0.0720 | 5 | 5191.54 | −0.0633 | 5349.22 | −0.0349 |
2005 | 6369.87 | 7236.89 | 0.1361 | 5 | 6390.58 | 0.0033 | 6515.31 | 0.0228 |
2006 | 7431.55 | 8676.68 | 0.1675 | 5 | 7104.84 | −0.0440 | 7811.55 | 0.0511 |
2007 | 9285.45 | 10,256.34 | 0.1046 | 5 | 8618.94 | −0.0718 | 9233.70 | −0.0056 |
2008 | 11,307.36 | 11,970.44 | 0.0586 | 5 | 11,074.59 | −0.0206 | 10,776.89 | −0.0469 |
2009 | 12,772.8 | 13,812.92 | 0.0814 | 5 | 13,123.72 | 0.0275 | 12,435.66 | −0.0264 |
2010 | 15,574.32 | 15,777.15 | 0.0130 | 4 | 14,237.59 | −0.0858 | 15,820.65 | 0.0158 |
2011 | 18,914.96 | 17,855.81 | −0.0560 | 4 | 18,727.54 | −0.0099 | 17,905.04 | −0.0534 |
2012 | 21,207.23 | 20,040.89 | −0.0550 | 4 | 21,630.52 | 0.0200 | 20,096.15 | −0.0524 |
2013 | 23,545.24 | 22,323.65 | −0.0519 | 4 | 23,597.46 | 0.0022 | 22,385.2 | −0.0493 |
2014 | 25,881.28 | 24,694.53 | −0.0459 | 4 | 25,993.23 | 0.0043 | 24,762.62 | −0.0432 |
2015 | 28,538.6 | 27,143.09 | −0.0489 | 4 | 28,186.08 | −0.0124 | 27,217.93 | −0.0463 |
2016 | 30,853.45 | 29,657.90 | −0.0387 | 4 | 31,300.04 | 0.0145 | 29,739.68 | −0.0361 |
RMSE | 984.02 | RMSE | 435.23 | RMSE | 710.33 | |||
MAPE | 0.0973 | MAPE | 0.0250 | MAPE | 0.0357 | |||
STD | 8.81% | STD | 2.57% | STD | 1.67% | |||
0.9869 | 0.9978 | 0.9932 | ||||||
2017 | 34,590.60 | 32,226.49 | −0.0683 | 3 | 33,210.16 | −0.0485 | 32,315.35 | −0.0658 |
2018 | 36,425.78 | 34,835.21 | −0.0437 | 4 | 35,242.42 | −0.0325 | 34,931.27 | −0.0410 |
2019 | 39,752.10 | 37,469.19 | −0.0574 | 4 | 37,467.45 | −0.0575 | 37,572.51 | −0.0548 |
2020 | 41,781.49 | 40,112.15 | −0.0400 | 4 | 39,732.76 | −0.0490 | 40,222.76 | −0.0373 |
2021 | 46,063.09 | 42,746.29 | −0.072 | 3 | 41,982.50 | −0.0886 | 42,846.16 | −0.0698 |
2022 | 48,670.37 | 45,593.14 | −0.0400 | 3 | 44,238.26 | −0.0911 | 45,478.32 | −0.0656 |
2023 | 50,012.85 | 48,233.97 | −0.072 | 4 | 46,491.69 | −0.0704 | 48,040.79 | −0.0394 |
RMSE | 23,830 | RMSE | 2962.10 | RMSE | 2360.90 | |||
MAPE | 0.0543 | MAPE | 0.0613 | MAPE | 0.0543 | |||
STD | 1.35% | STD | 2.13% | STD | 1.30% | |||
0.8222 | 0.6769 | 0.8298 |
QFR | NAR | QFRMKM | ||||||
---|---|---|---|---|---|---|---|---|
Year | Raw | Predicted Value | Relative Error | Station Value | Predicted Value | Relative Error | Predicted Value | Relative Error |
2000 | 3551.49 | 2645.76 | −0.2553 | 1 | 3551.49 | 0000 | 3322.31 | −0.0645 |
2001 | 3831.90 | 3387.11 | −0.1660 | 1 | 3831.90 | 0000 | 4253.23 | 0.1100 |
2002 | 4151.54 | 4263.08 | 0.0269 | 3 | 4151.54 | 0000 | 4325.80 | 0.0420 |
2003 | 4659.95 | 5273.66 | 0.1317 | 5 | 4660.31 | 0.0001 | 4476.25 | −0.0394 |
2004 | 5542.62 | 6418.87 | 0.1581 | 5 | 5543.82 | 0.0002 | 5448.31 | −0.0170 |
2005 | 6369.87 | 7698.70 | 0.2086 | 5 | 6590.70 | 0.0347 | 6534.62 | 0.0259 |
2006 | 7431.55 | 9113.14 | 0.2263 | 5 | 7432.25 | 0.0001 | 7735.19 | 0.0409 |
2007 | 9285.45 | 10,662.21 | 0.1483 | 5 | 9285.73 | 0.0000 | 9050.03 | −0.0254 |
2008 | 11,307.36 | 12,345.90 | 0.0918 | 4 | 11,307.29 | 0.0000 | 11,412.15 | 0.0093 |
2009 | 12,772.80 | 14,164.20 | 0.1089 | 4 | 13,350.84 | 0.0453 | 13,092.93 | 0.0251 |
2010 | 15,574.32 | 16,117.13 | 0.0349 | 4 | 15,574.57 | 0.0000 | 14,898.16 | −0.0434 |
2011 | 18,914.96 | 18,204.68 | −0.0376 | 3 | 18,915.83 | 0.0000 | 18,472.53 | −0.0234 |
2012 | 21,207.23 | 20,426.85 | −0.0368 | 3 | 21,207.04 | −0.0000 | 20,727.39 | −0.0226 |
2013 | 23,545.24 | 22,783.63 | −0.0323 | 3 | 23,545.58 | 0.0000 | 23,118.85 | −0.0181 |
2014 | 25,881.28 | 25,275.04 | −0.0234 | 3 | 26,301.74 | 0.0162 | 25,646.92 | −0.0091 |
2015 | 28,538.60 | 27,901.07 | −0.0223 | 3 | 28,539.97 | 0.0000 | 28,311.58 | −0.0080 |
2016 | 30,853.45 | 30,661.72 | −0.0062 | 3 | 30,942.76 | 0.0029 | 31,112.85 | 0.0084 |
RMSE | 922.83 | RMSE | 182.73 | RMSE | 328.09 | |||
MAPE | 0.0980 | MAPE | 0.0058 | MAPE | 0.0313 | |||
STD | 7.73% | STD | 1.31% | STD | 2.47% | |||
0.9888 | 0.9995 | 0.9987 | ||||||
2017 | 34,590.6 | 33,556.99 | −0.0299 | 3 | 32,720.35 | −0.0541 | 34,050.72 | −0.0156 |
2018 | 36,425.78 | 36,586.87 | 0.0044 | 3 | 34,384.71 | −0.0560 | 37,125.18 | 0.0192 |
2019 | 39,752.10 | 39,751.38 | 0.0000 | 3 | 35,905.24 | −0.0968 | 40,336.05 | 0.0147 |
2020 | 41,781.49 | 43,050.51 | 0.0304 | 3 | 36,937.82 | −0.1159 | 43,683.92 | 0.0455 |
2021 | 46,063.09 | 46,484.25 | 0.0091 | 3 | 37,797.83 | −0.1794 | 47,168.18 | 0.0240 |
2022 | 48,670.37 | 50,052.62 | 0.0284 | 3 | 39,096.34 | −0.1967 | 50,789.06 | 0.0435 |
2023 | 50,012.85 | 53,755.60 | 0.0748 | 4 | 39,572.78 | −0.2087 | 49,689.96 | −0.0065 |
RMSE | 1638.90 | RMSE | 6707.08 | RMSE | 1228.00 | |||
MAPE | 0.0253 | MAPE | 0.1296 | MAPE | 0.0241 | |||
STD | 2.34% | STD | 6.05% | STD | 1.38% | |||
0.9417 | 0.1417 | 0.9576 |
FGM | FGMKM | MKMOWM | ||||||
---|---|---|---|---|---|---|---|---|
Year | Raw | Predicted Value | Relative Error | Station Value | Predicted Value | Relative Error | Predicted Value | Relative Error |
2000 | 3551.50 | 3551.49 | 0 | 1 | 3428.74 | −0.0346 | 3308.86 | −0.0683 |
2001 | 3831.90 | 4292.65 | 0.1202 | 2 | 3875.42 | 0.0114 | 4300.99 | 0.1224 |
2002 | 4151.50 | 5221.38 | 0.2577 | 4 | 4428.65 | 0.0667 | 4312.80 | 0.0388 |
2003 | 4660.00 | 6260.52 | 0.3435 | 5 | 4853.19 | 0.0415 | 4428.60 | −0.0496 |
2004 | 5542.60 | 7402.21 | 0.3355 | 5 | 5738.23 | 0.0353 | 5411.66 | −0.0236 |
2005 | 6369.90 | 8650.29 | 0.3580 | 5 | 6705.75 | 0.0527 | 6512.99 | 0.0225 |
2006 | 7431.60 | 10,012.49 | 0.3473 | 5 | 7761.74 | 0.0444 | 7731.83 | 0.0404 |
2007 | 9285.50 | 11,498.52 | 0.2383 | 4 | 9752.77 | 0.0503 | 8961.20 | −0.0349 |
2008 | 11,307 | 13,119.55 | 0.1603 | 3 | 11,476.16 | 0.0149 | 11,404.06 | 0.0086 |
2009 | 12,773 | 14,888.03 | 0.1656 | 3 | 13,023.11 | 0.0196 | 13,101.76 | 0.0258 |
2010 | 15,574 | 16,817.67 | 0.0798 | 2 | 15,186.62 | 0.0249 | 14,861.70 | −0.0458 |
2011 | 18,915 | 18,923.54 | 0.0005 | 1 | 18,269.49 | 0.0341 | 18,498.19 | −0.0220 |
2012 | 21,207 | 21,222.13 | 0.0007 | 1 | 20,488.63 | 0.0339 | 20,757.57 | −0.0212 |
2013 | 23,545 | 23,731.44 | 0.0079 | 1 | 22,911.21 | 0.0269 | 23,145.10 | −0.0170 |
2014 | 25,881 | 26,471.20 | 0.0228 | 1 | 25,556.28 | 0.0126 | 25,658.38 | −0.0086 |
2015 | 28,539 | 29,462.92 | 0.0324 | 1 | 28,444.60 | 0.0033 | 28,294.77 | −0.0085 |
2016 | 30,853 | 32,730.13 | 0.0608 | 1 | 31,598.88 | 0.0242 | 31,051.41 | 0.0064 |
RMSE | 1499.00 | RMSE | 409.89 | RMSE | 334.40 | |||
MAPE | 0.1489 | MAPE | 0.0313 | MAPE | 0.0332 | |||
STD | 13.39% | STD | 1.62% | STD | 2.76% | |||
0.9721 | 0.9979 | 0.9986 | ||||||
2017 | 34,591 | 36,298.55 | 0.0494 | 1 | 35,043.97 | 0.0131 | 32,292.51 | −0.0192 |
2018 | 36,426 | 40,196.25 | 0.1035 | 2 | 38,806.96 | 0.0654 | 36,912.60 | 0.0134 |
2019 | 39,752 | 44,453.94 | 0.1183 | 2 | 42,917.49 | 0.0796 | 40,009.75 | 0.0065 |
2020 | 41,781 | 49,105.14 | 0.1753 | 3 | 47,407.93 | 0.1347 | 43,213.19 | 0.0343 |
2021 | 46,063 | 54,186.50 | 0.1764 | 3 | 52,313.67 | 0.1357 | 46,517.77 | 0.0099 |
2022 | 48,670 | 59,738.09 | 0.2274 | 4 | 57,673.38 | 0.1850 | 49,918.86 | 0.0257 |
2023 | 50,013 | 65,803.65 | 0.3157 | 5 | 63,529.30 | 0.2703 | 47,974.62 | −0.0414 |
RMSE | 8707.20 | RMSE | 7074.80 | RMSE | 1124.75 | |||
MAPE | 0.1666 | MAPE | 0.1262 | MAPE | 0.0214 | |||
STD | 8.12% | STD | 7.84% | STD | 1.20% | |||
0.5045 | 0.5948 | 0.9582 |
Statistic | Raw | OWM | OWMKM | MKMOWM | QFRMKM | FGMKM |
---|---|---|---|---|---|---|
ADF | −2.6396 | −3.6657 | −3.8905 | −3.0440 | −3.000 | −2.1295 |
p-value | 0.3287 | 0.04531 | 0.0295 | 0.1747 | 0.1914 | 0.5230 |
Lag order | 2 | 2 | 2 | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Luo, C.; Qiu, M. Optimal Weighted Markov Model and Markov Optimal Weighted Combination Model with Their Application in Hunan’s Gross Domestic Product. Mathematics 2025, 13, 533. https://doi.org/10.3390/math13030533
Li D, Luo C, Qiu M. Optimal Weighted Markov Model and Markov Optimal Weighted Combination Model with Their Application in Hunan’s Gross Domestic Product. Mathematics. 2025; 13(3):533. https://doi.org/10.3390/math13030533
Chicago/Turabian StyleLi, Dewang, Chingfei Luo, and Meilan Qiu. 2025. "Optimal Weighted Markov Model and Markov Optimal Weighted Combination Model with Their Application in Hunan’s Gross Domestic Product" Mathematics 13, no. 3: 533. https://doi.org/10.3390/math13030533
APA StyleLi, D., Luo, C., & Qiu, M. (2025). Optimal Weighted Markov Model and Markov Optimal Weighted Combination Model with Their Application in Hunan’s Gross Domestic Product. Mathematics, 13(3), 533. https://doi.org/10.3390/math13030533