Deep Learning Artificial Neural Network for Pricing Multi-Asset European Options
Abstract
:1. Introduction
2. Model of Multi-Asset Options
3. Computational Frame of DLANN
3.1. Structure of DLANN
- (1)
- It is relatively hard to compute the partial derivatives, and , for , , and . We must update the parameters and with the appropriate leaning rate .
- (2)
- For a deep learning neural network p-DLANN (), it is somewhat complicated to compute the partial derivatives of and for and .
- (3)
- In option pricing, to use the deep learning networks p-DLANN to solve the PDE, we must first obtain the discrete PDE.
3.2. Update of Weights and Bias
Algorithm 1: p-layers DLANN for multi-asset option pricing in time region . |
|
3.3. Time-Segment DLANN
Algorithm 2: p-TSDLANN in . |
|
4. Numerical Examples
4.1. Parameters Setting
- (1)
- The learning rate was set as initially. When the objective function did not decrease, we set = 0.5 . Throughout the training process, we used a factor of 0.5 to reduce the learning rate when the error did not decrease, repeatedly.
- (2)
- The initial parameters values and were set randomly between .
- (3)
- To speed the training process, at each iteration we only used partial training data to update the weights and the bias . Simply, at the ith iteration, we used the data sequence labeled by as the input data of p-DLANN.
- (4)
- If the MSE of the simulated solutions was not ideal, we reset the initial values of the weights and bias , randomly. This technique may prevent the optimization process from falling into a local minimum rather than a global performance values.
- (5)
- The simulated result was for any input data (see expression (41)) contained within the envelope of , with trained parameters and .
Algorithm 3: Monte Carlo algorithm for multi-asset option pricing in . |
|
4.2. Numerical Results with Geometric Mean Payoff Function
4.3. Numerical Results with Arithmetic Mean Payoff Function
4.4. Numerical Results with
4.5. Numerical Results for TSDLANN
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Deducing the Derivatives for Weights and Bias
Appendix A.1.1. Deducing the Derivatives for Weights
Appendix A.1.2. Deducing the Derivatives for Weights
Appendix A.2. Deducing g ′ (U) and g ′′ (U)
References
- Álvarez, D.; González-Rodríguez, P.; Kindelan, M. A local radial basis function method for the Laplace-Beltrami operator. J. Sci. Comput. 2021, 86, 28. [Google Scholar] [CrossRef]
- Banei, S.; Shanazari, K. On the convergence analysis and stability of the RBF-adaptive method for the forward-backward heat problem in 2D. Appl. Numer. Math. 2021, 159, 297–310. [Google Scholar] [CrossRef]
- Bastani, A.F.; Ahmadi, Z.; Damircheli, D. A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Appl. Numer. Math. 2013, 65, 79–90. [Google Scholar] [CrossRef]
- Bollig, E.; Flyer, N.; Erlebacher, G. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J. Comput. Phys. 2012, 231, 7133–7151. [Google Scholar] [CrossRef]
- Fornberg, B.; Lehto, E. Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 2011, 230, 2270–2285. [Google Scholar] [CrossRef]
- Fornberg, B.; Piret, C. A stable algorithm for at radial basis functions on a sphere. SIAM J. Sci. Comput. 2007, 30, 60–80. [Google Scholar] [CrossRef]
- Fornberg, B.; Piret, C. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere. J. Comput. Phys. 2008, 227, 2758–2780. [Google Scholar] [CrossRef]
- Larsson, E.; Shcherbakov, V.; Heryudono, A. A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 2017, 39, 2538–2563. [Google Scholar] [CrossRef]
- Li, H.G.; Mollapourasl, R.; Haghi, M. A local radial basis function method for pricing options under the regime switching model. J. Sci. Comput. 2019, 79, 517–541. [Google Scholar] [CrossRef]
- Shcherbakov, V.; Larsson, E. Radial basis function partition of unity methods for pricing vanilla Basket options. Comput. Math. Appl. 2016, 71, 185–200. [Google Scholar] [CrossRef]
- Sunday, E.; Olabisi, U.; Enahoro, O. Analytical solutions of the Black–Scholes pricing model for European option valuation via a projected differential transformation method. Entropy 2015, 17, 7510–7521. [Google Scholar] [CrossRef]
- Zhao, W.J. An artificial boundary method for American option pricing under the CEV model. SIAM J. Numer. Anal. 2008, 46, 2183–2209. [Google Scholar]
- Chiarella, C.; Kang, B.; Meyer, G.H. The numerical solution of the American option pricing problem-finite difference and transform approaches. World Sci. Books 2014, 127, 161–168. [Google Scholar]
- in’t Hout, K.; Foulon, S. ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 2008, 7, 303–320. [Google Scholar]
- in ’t Hout, K.; Weideman, J.A.C. A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 2011, 33, 763–785. [Google Scholar] [CrossRef]
- Pang, H.; Sun, H. Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 2016, 66, 41–66. [Google Scholar] [CrossRef]
- Song, L.; Wang, W. Solution of the fractional Black-Scholes option pricing model by finite difference method. Abstr. Appl. Anal. 2013, 2013, 194286. [Google Scholar] [CrossRef]
- Gabriel, T.A.; Amburgey, J.D.; Bishop, B.L. CALOR: A Monte Carlo Program Package for the Design and Analysis of Calorimeter Systems. 2024, In FORTRAN IV, osti Information Bridge Server. Available online: https://www.osti.gov/servlets/purl/7215451/ (accessed on 13 December 2024).
- Gamba, A. An Extension of Least Squares Monte Carlo Simulation for Multi-Options Problems; 2002. pp. 1–40. Available online: https://www.realoptions.org/papers2002/Gamba.pdf (accessed on 13 December 2024).
- Rodriguez, A.L.; Grzelak, L.A.; Oosterlee, C.W. On an efficient multiple time-step Monte Carlo simulation of the SABR model. Soc. Sci. Electron. Publ. 2016, 17, 1549–1565. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Z. Convergence analysis of iterative Laplace transform methods for the coupled PDEs from regime-switching option pricing. J. Sci. Comput. 2018, 75, 1656–1674. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Z. Fast Laplace transform methods for the PDE system of Parisian and Parasian option pricing. Sci. China Math. 2022, 65, 1229–1246. [Google Scholar] [CrossRef]
- Panini, R.; Srivastav, R.P. Option pricing with Mellin transforms. Math. Comput. Model. 2004, 40, 43–56. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Sun, H. Fast Laplace transform methods for free-boundary problems of fractional diffusion equations. J. Sci. Comput. 2018, 74, 49–69. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, W. Robust willow tree method under Lévy processes. J. Comput. Appl. Math. 2023, 424, 114982. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, W. Joint calibration of S&P 500 and VIX options under local stochastic volatility models. Int. J. Financ. Econ. 2024, 29, 273–310. [Google Scholar]
- Anderson, D.; Ulrych, U. Accelerated American option pricing with deep neural networks. Quant. Financ. Econ. 2023, 7. [Google Scholar] [CrossRef]
- Carverhill, A.P.; Cheuk, T.H.F. Alternative Neural Network Approach for Option Pricing and Hedging; Social Science Electronic Publishing: Rochester, NY, USA, 2024; pp. 1–17. [Google Scholar] [CrossRef]
- Gan, L.; Liu, W. Option pricing based on the residual neural network. Comput. Econ. 2023, 63, 1327–1347. [Google Scholar] [CrossRef]
- Kapllani, L.; Teng, L. Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations. Discret. Contin. Dyn. Syst. Ser. B 2024, 29, 1695–1729. [Google Scholar] [CrossRef]
- Lee, Y.; Son, Y. Predicting arbitrage-free American option prices using artificial neural network with pseudo inputs. Ind. Eng. Manag. Syst. 2021, 20, 119–129. [Google Scholar] [CrossRef]
- Mary, M.; Salchenberger, L. A neural network model for estimating option prices. Appl. Intell. 1993, 3, 193–206. [Google Scholar]
- Nikolas, N.; Lorenz, R. Interpolating Between BSDEs and PINNs: Deep Learning, for Elliptic and Parabolic Boundary Value Problems. J. Mach. Learn. 2024, 2, 31–64. [Google Scholar] [CrossRef]
- Balkin, R.; Ceniceros, H.D.; Hu, R. Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms. J. Mach. Learn. 2024, 3, 23–63. [Google Scholar] [CrossRef]
- Teng, Y.; Li, Y.; Wu, X. Option volatility investment strategy: The combination of neural network and classical volatility prediction model. Discret. Dyn. Nat. Soc. 2022, 2022, 8952996. [Google Scholar] [CrossRef]
- Tung, W.L.; Quek, C. Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach. Expert Syst. Appl. 2011, 38, 4668–4688. [Google Scholar] [CrossRef]
- Umeorah, N.; Mashele, P.; Agbaeze, O.M.J.C. Barrier Options and Greeks: Modeling with Neural Networks. Axioms 2023, 12, 384. [Google Scholar] [CrossRef]
- Wang, H. Nonlinear neural network forecasting model for stock index option price: Hybrid GJRCGARCH approach. Expert Syst. Appl. 2009, 36, 564–570. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, H.; Li, Y.; Kang, C.; Wu, Y. Three-layer artificial neural network for pricing multi-asset European option. Mathematics 2024, 12, 2770. [Google Scholar] [CrossRef]
- Jiang, L. Mathematical Models and Methods of Option Pricing (Chinese Edition); Higher Education Press: Beijing, China, 2008. [Google Scholar]
Name | Meaning |
---|---|
The number of data, which are the initial conditions | |
N | The number of input data for the training of DLANN |
The input number of data for the discrete PDE | |
DLANN with weights and bias | |
DLANN output with input data | |
Learning rate of DLANN | |
Input data at the ℓ-layer () | |
Output data at the ℓ-layer () | |
Error for the payoff functions or initial values | |
Error for the discrete PDE | |
, | Partial derivatives of for kth input data |
, | Partial derivatives of for kth input data |
Partial derivatives for with , and |
Input | DLANN | MC | Anal. | ERR | RE |
---|---|---|---|---|---|
CPU time (s) | 10.22 | 13.81 |
Input | DLANN | MC | Anal. | ERR | RE |
---|---|---|---|---|---|
CPU time (s) | 23.56 | 215.94 |
Input | DLANN | MC | Anal. | ERR | RE |
---|---|---|---|---|---|
CPU time (s) | 59.32 | 756.43 |
Input | DLANN | MC | Anal. | ERR | RE |
---|---|---|---|---|---|
CPU time (s) | 90.85 | 2810.64 |
Input | DLANN | MC | ERR | RE |
---|---|---|---|---|
CPU time (s) | 9.76 | 11.23 |
Input | DLANN | MC | ERR | RE |
---|---|---|---|---|
CPU time (s) | 23.12 | 210.23 |
Input | DLANN | MC | ERR | RE |
---|---|---|---|---|
CPU time (s) | 56.92 | 876.12 |
Input | DLANN | MC | ERR | RE |
---|---|---|---|---|
CPU time (s) | 96.65 | 2913.78 |
Input | DLANN | MC | ERR | RE |
---|---|---|---|---|
CPU time (s) | 29.23 | 276.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wu, H.; Li, Y.; Kang, C.; Wu, Y. Deep Learning Artificial Neural Network for Pricing Multi-Asset European Options. Mathematics 2025, 13, 617. https://doi.org/10.3390/math13040617
Zhou Z, Wu H, Li Y, Kang C, Wu Y. Deep Learning Artificial Neural Network for Pricing Multi-Asset European Options. Mathematics. 2025; 13(4):617. https://doi.org/10.3390/math13040617
Chicago/Turabian StyleZhou, Zhiqiang, Hongying Wu, Yuezhang Li, Caijuan Kang, and You Wu. 2025. "Deep Learning Artificial Neural Network for Pricing Multi-Asset European Options" Mathematics 13, no. 4: 617. https://doi.org/10.3390/math13040617
APA StyleZhou, Z., Wu, H., Li, Y., Kang, C., & Wu, Y. (2025). Deep Learning Artificial Neural Network for Pricing Multi-Asset European Options. Mathematics, 13(4), 617. https://doi.org/10.3390/math13040617