Graph-Based Lexical Sentiment Propagation Algorithm
Abstract
:1. Introduction
- ConGraCNet Sentiment Propagation Algorithm: The algorithm for the automatic generation of a broad-coverage sentiment dictionary for a selected language based on an existing sentiment dictionary and a corpus-based syntactic-semantic embedding graph. This contribution is particularly important for the study of sentiment analysis of languages for which available sentiment dictionaries have low coverage. It applies to most languages due to the universal representation of semantic networks; It is a transparent and easily explainable traditional approach.
- Syntactic–Semantic-hrWac Embedding Graph [23]: A lexical graph structure constructed utilising the hrWac corpus [24] with the application of the ConGraCNet methodology. This graph is instrumental in mapping the graph structure of lexeme-centric networks, which are pivotal for the sentiment propagation algorithm. It facilitates the systematic propagation of sentiment values across such networks and provides a structured framework for the analytical examination of semantic domains within the corpus;
- Sentiment-hr dictionary [25]: a sentiment dictionary for the Croatian language propagated using the hrWac Coordination Graph and sparse Croatian sentiment dictionary from BabelSenticNet [26]. It is currently the most comprehensive sentiment dictionary for the Croatian language and available as an open-access resource;
- Sentiment-hr-AI sentiment dictionary [27]: This dictionary for the Croatian language has been constructed using OpenAI’s GPT-4 [28]. The creation of Sentiment-hr-AI represents a methodological advancement in the field, as it utilises the extensive natural language understanding capabilities of state-of-the-art LLMs. The primary aim of this dictionary is to facilitate comparative and methodological analysis within sentiment analysis research.
2. Related Approaches and Available Resources
3. Augmenting Sentiment Lexicons: Leveraging Graph Theory for Enhanced Dictionary Coverage
3.1. Coordination-Based Syntactic-Semantic Embedding Lexical Graph
3.2. Analysing Semantic Contexts: The Role of Lexical Networks in Lexical Graph Embeddings
3.3. Assigned Dictionary Values of Lexemes
3.4. Sentiment Dictionary Propagation Algorithm
Algorithm 1 Propagation of sentiment values |
|
4. Propagating the Sentiment-hr Dictionary from Coordination Based Lexical Graph
- Corpus: hrWaC [66];
- Sentiment dictionary: SenticNet 6;
- lexical FoF network parameters: resulting in a FoF network.
5. Extracting Sentiment Values from Large Language Models
5.1. Sentiment-hr AI Dictionary Propagation
Propose sentiment value for a lexeme, presented as lempos, with lemma as the first part and part-of-speech as the last part.
Lempos are lexical concepts in {language} language. Write the sentiment polarity and pleasantness as a fine-grained float value in a range from −1.00 to 1.00.
For each lempos write a response only in JSON format with keys:
lemma, part_of_speech sentiment_polarity, pleasantness.
Output JSON results as dictionaries, separated with commas, do not make a list out of multiple dictionaries.
Target lempos.
5.2. Analysis of LLM Sentiment Extraction
6. Discussion
6.1. Sentiment Dictionary Selection
6.2. Lexical Graph Model Selection
6.3. On Lexical FoF Network Parameters
6.4. Propagation Certainty: Proportion of Known to Overall Nodes in the Lexical FoF Network
6.5. Comparison of Approaches: Traditional vs. AI-Enhanced Sentiment Analysis
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B. Sentiment Analysis and Opinion Mining; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Liu, B. Sentiment Analysis and Subjectivity. In Handbook of Natural Language Processing; Chapman and Hall/CRC: Oxfordshire, UK, 2010; pp. 627–666. [Google Scholar]
- Barrett, L.F. Valence Is a Basic Building Block of Emotional Life. J. Res. Personal. 2006, 40, 35–55. [Google Scholar] [CrossRef]
- Al-Qablan, T.A.; Mohd Noor, M.H.; Al-Betar, M.A.; Khader, A.T. A Survey on Sentiment Analysis and Its Applications. Neural Comput. Appl. 2023, 35, 21567–21601. [Google Scholar]
- Badaro, G.; Jundi, H.; Hajj, H.; El-Hajj, W. EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet. In Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, Orleans, LA, USA, 5–6 June 2018; pp. 86–93. [Google Scholar]
- Cui, J.; Wang, Z.; Ho, S.-B.; Cambria, E. Survey on Sentiment Analysis: Evolution of Research Methods and Topics. Artif. Intell. Rev. 2023, 56, 8469–8510. [Google Scholar]
- Khoo, C.S.; Johnkhan, S.B. Lexicon-Based Sentiment Analysis: Comparative Evaluation of Six Sentiment Lexicons. J. Inf. Sci. 2018, 44, 491–511. [Google Scholar]
- Taboada, M.; Brooke, J.; Tofiloski, M.; Voll, K.; Stede, M. Lexicon-based methods for sentiment analysis. Comput. Linguist. 2011, 37, 267–307. [Google Scholar]
- Villanes, A.; Healey, C.G. Domain-specific text dictionaries for text analytics. Int. J. Data Sci. Anal. 2023, 15, 105–118. [Google Scholar]
- Cambria, E.; Li, Y.; Xing, F.Z.; Poria, S.; Kwok, K. SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual, 19–23 October 2020; pp. 105–114. [Google Scholar]
- Imbir, K.K.; Duda-Goławska, J.; Wielgopolan, A.; Sobieszek, A.; Pastwa, M.; Zygierewicz, J. The Role of Subjective Significance, Valence, and Arousal in the Explicit Processing of Emotion-Laden Words. PeerJ 2023, 11, e14583. [Google Scholar]
- Ban Kirigin, T.; Bujačić Babić, S.; Perak, B. Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph. Mathematics 2021, 9, 1449. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Yan, D.; Cao, J.; Zhang, Q. Is a Single Embedding Sufficient? Resolving Polysemy of Words from the Perspective of Markov Decision Process. In Database Systems for Advanced Applications, Proceedings of the International Conference on Database Systems for Advanced Applications, Tianjin, China, 17–20 April 2023; Springer: Cham, Switzerland, 2023; pp. 555–571. [Google Scholar]
- Zhang, X.; Mao, R.; He, K.; Cambria, E. Neuro-Symbolic Sentiment Analysis with Dynamic Word Sense Disambiguation. In Findings of the Association for Computational Linguistics: EMNLP 2023; Association for Computational Linguistics: Singapore, 2023; pp. 8772–8783. [Google Scholar]
- Kaity, M.; Balakrishnan, V. Sentiment Lexicons and Non-English Languages: A Survey. Knowl. Inf. Syst. 2020, 62, 4445–4480. [Google Scholar]
- Mabokela, R.; Schlippe, T. A sentiment corpus for South African under-resourced languages in a multilingual context. In Proceedings of the 1st Annual Meeting of the ELRA/ISCA, Marseille, France, 20–25 June 2022; pp. 70–77. [Google Scholar]
- Koto, F.; Beck, T.; Talat, Z.; Gurevych, I.; Baldwin, T. Zero-shot sentiment analysis in low-resource languages using a multilingual sentiment lexicon. arXiv 2024, arXiv:2402.02113. [Google Scholar]
- ConGraCNet Code. Available online: https://github.com/bperak/ConGraCNet (accessed on 20 March 2025).
- Perak, B.; Ban Kirigin, T. Construction Grammar Conceptual Network: Coordination-Based Graph Method for Semantic Association Analysis. Nat. Lang. Eng. 2023, 29, 584–614. [Google Scholar]
- Ban Kirigin, T.; Bujačić Babić, S.; Perak, B. Graph-Based Taxonomic Semantic Class Labeling. Future Internet 2022, 14, 383. [Google Scholar] [CrossRef]
- Ban Kirigin, T.; Bujačić Babić, S.; Perak, B. Semi-Local Integration Measure of Node Importance. Mathematics 2022, 10, 405. [Google Scholar] [CrossRef]
- ConGraCNet Application. Available online: https://polinom.uniri.hr (accessed on 20 March 2025).
- Lexical Embedding Graph. Available online: https://drive.google.com/file/d/1HB-o4YQcvIog4q7d2WNUte7Rjoi05EpS/view?usp=sharing (accessed on 20 March 2025).
- Ljubešić, N. hrWaC and slWaC: Compiling Web Corpora for Croatian and Slovene. In Text, Speech and Dialogue, Proceedings of the 14th International Conference on Text, Speech and Dialogue, TSD 2011, Pilsen, Czech Republic, 1–5 September 2011; Springer: Berlin, Germany, 2011; pp. 395–402. [Google Scholar]
- Sentiment-hr Dictionary. Available online: https://drive.google.com/file/d/1NRVA-ZFkhkBSrMma8jhcloLHeGLBMJAv/view?usp=sharing (accessed on 27 March 2025).
- Vilares, D.; Peng, H.; Satapathy, R.; Cambria, E. abelSenticNet: A commonsense reasoning framework for multilingual sentiment analysis. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1292–1298. [Google Scholar]
- Sentiment-hr-AI Sentiment Dictionary. Available online: https://drive.google.com/file/d/13tNteYu6QmIAPOYefui4SiD4YuytB4MV/view?usp=sharing (accessed on 27 March 2025).
- OpenAI. OpenAI: Artificial General Intelligence (AGI). 2023. Available online: https://openai.com/blog/new-models-and-developer-products-announced-at-devday (accessed on 20 March 2025).
- Mohammad, S.M. Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text. In Emotion Measurement; Elsevier: Amsterdam, The Netherlands, 2016; pp. 201–237. [Google Scholar]
- Mohammad, S.; Bravo-Marquez, F.; Salameh, M.; Kiritchenko, S. SemEval-2018 Task 1: Affect in Tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA, 5–6 June 2018; pp. 1–17. [Google Scholar]
- Wilson, T.; Wiebe, J.; Hoffmann, P. Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis. Comput. Linguist. 2009, 35, 399–433. [Google Scholar]
- Barel, G.; Tsur, O.; Vilenchik, D. Acquired TASTE: Multimodal Stance Detection with Textual and Structural Embeddings. arXiv 2024, arXiv:2412.03681. [Google Scholar]
- Lane, J.; Saint-Amand, H. Sentiment Analysis in Financial Texts. In Proceedings of the 28th International Conference on Computational Linguistics, Online, 8–13 December 2020; Association for Computational Linguistics: Barcelona, Spain, 2020; pp. 1–12. [Google Scholar]
- Alamoodi, A.H.; Zaidan, B.B.; Zaidan, A.A.; Albahri, O.S.; Mohammed, K.I.; Malik, R.Q.; Almahdi, E.M.; Tareq, Z.; Albahri, A.S.; Chyad, M.A.; et al. A Systematic Review and Meta-Analysis of Artificial Intelligence (AI)-Based Breast Cancer Diagnosis and Prognosis Models in Medical Imaging Modalities: Deep Learning and Hybrid Learning Approaches. Comput. Biol. Med. 2021, 132, 104357. [Google Scholar] [CrossRef]
- Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef]
- Wankhade, M.; Rao, A.C.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 2022, 55, 5731–5780. [Google Scholar]
- Bordoloi, M.; Biswas, S.K. Sentiment Analysis: A Survey on Design Framework, Applications, and Future Scopes. Artif. Intell. Rev. 2023, 56, 12505–12560. [Google Scholar]
- Esuli, A.; Sebastiani, F. SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, 22–28 May 2006; pp. 1–5. Available online: http://www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf (accessed on 20 March 2025).
- Barnes, J. Sentiment and Emotion Classification in Low-Resource Settings. In Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Toronto, ON, Canada, 14 July 2023; pp. 290–304. [Google Scholar]
- Buechel, S.; Rücker, S.; Hahn, U. Learning and Evaluating Emotion Lexicons for 91 Languages. arXiv 2020, arXiv:2005.05672. [Google Scholar]
- Cortis, K.; Freitas, A.; Daudert, T.; Huerlimann, M.; Zarrouk, M.; Handschuh, S.; Davis, B. SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, BC, Canada, 3–4 August 2017; pp. 519–535. [Google Scholar]
- Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 17–23 May 2010. [Google Scholar]
- Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar]
- Cambria, E.; Poria, S.; Hazarika, D.; Kwok, K. SenticNet 5: Discovering Conceptual Primitives for Sentiment Analysis by Means of Context Embeddings. AAAI Conf. Artif. Intell. 2018, 32, 1795–1802. [Google Scholar]
- Ahmed, M.; Chen, Q.; Li, Z. Constructing Domain-Dependent Sentiment Dictionary for Sentiment Analysis. Neural Comput. Appl. 2020, 32, 14719–14732. [Google Scholar]
- Cambria, E.; Fu, J.; Bisio, F.; Poria, S. AffectiveSpace 2: Enabling Affective Intuition for Concept-Level Sentiment Analysis. AAAI Conf. Artif. Intell. 2015, 29, 508–514. [Google Scholar]
- Tsai, A.C.-R.; Wu, C.-E.; Tsai, R.T.-H.; Hsu, J.Y.-j. Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Intell. Syst. 2013, 28, 22–30. [Google Scholar]
- Cambria, E.; Livingstone, A.; Hussain, A. The Hourglass of Emotions. In Cognitive Behavioural Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 144–157. [Google Scholar]
- Susanto, Y.; Livingstone, A.G.; Ng, B.C.; Cambria, E. The Hourglass Model Revisited. IEEE Intell. Syst. 2020, 35, 96–102. [Google Scholar] [CrossRef]
- Plutchik, R. The Nature of Emotions. AmSci 2001, 89, 344. [Google Scholar]
- Glavaš, G.; Šnajder, J.; Bašić, B.D. Semi-Supervised Acquisition of Croatian Sentiment Lexicon. In Text, Speech Dialogue, Proceedings of the 15th International Conference on Text, Speech and Dialogue, TSD 2012, Brno, Czech Republic, 3–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 166–173. [Google Scholar] [CrossRef]
- Ćoso, B.; Guasch, M.; Ferré, P.; Hinojosa, J.A. Affective and concreteness norms for 3,022 Croatian words. Q. J. Exp. Psychol. 2019, 72, 2302–2312. [Google Scholar] [CrossRef]
- Ilić, A.; Beliga, S. The Polarity of Croatian Online News Related to COVID-19: A First Insight. In Proceedings of the 32nd Central European Conference on Information and Intelligent Systems (CECIIS 2021), Varazdin, Croatia, 13–15 October 2021. [Google Scholar]
- Agić, Ž.; Ljubešić, N.; Tadić, M. Towards Sentiment Analysis of Financial Texts in Croatian. Bull. Mark. 2010, 143, 69. [Google Scholar]
- Babić, K.; Petrović, M.; Beliga, S.; Martinčić-Ipšić, S.; Matešić, M.; Meštrović, A. Characterisation of COVID-19-Related Tweets in the Croatian Language: Framework Based on the Cro-CoV-cseBERT Model. Appl. Sci. 2021, 11, 10442. [Google Scholar] [CrossRef]
- Mršić, L.; Kopal, R.; Klepac, G. Analyzing Slavic Textual Sentiment Using Deep Convolutional Neural Networks. Adv. Intell. Syst. Comput. 2017, 978, 207–224. [Google Scholar]
- Thakkar, G.; Mikelic Preradović, M.; Tadić, N. Multi-task Learning for Cross-Lingual Sentiment Analysis. arXiv 2022, arXiv:2212.07160. [Google Scholar]
- Rotim, L.; Šnajder, J. Comparison of Short-Text Sentiment Analysis Methods for Croatian. In Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing, Valencia, Spain, 4 April 2017; pp. 69–75. [Google Scholar] [CrossRef]
- Goldberg, A.E. Constructions: A Construction Grammar Approach to Argument Structure; University of Chicago Press: Chicago, IL, USA, 1995. [Google Scholar]
- Langacker, R. Cognitive Grammar: A Basic Introduction; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Tomasello, M.; Brooks, P.J. Early syntactic development: A construction grammar approach. In The Development of Language; Psychology Press: Hove, UK, 1999; pp. 161–190. [Google Scholar]
- Bergen, B.; Chang, N. Embodied Construction Grammar in Simulation-Based Language Understanding. In Construction Grammars: Cognitive Grounding and Theoretical Extensions; John Benjamins Publishing Company: Amsterdam, The Netherlands, 2005; Volume 3, pp. 147–190. [Google Scholar]
- Sentiment Propagation. Available online: https://github.com/bperak/sentiment_propagation (accessed on 27 March 2025).
- EnTenTen. Available online: https://app.sketchengine.eu/#dashboard?corpname=preloaded%2Fententen13_tt2_1 (accessed on 20 March 2025).
- Csardi, G.; Nepusz, T. The igraph Software Package for Complex Network Research. InterJournal 2006, Complex Systems, 1695. Available online: https://igraph.org (accessed on 20 March 2025).
- hrWac22. Available online: https://app.sketchengine.eu/#dashboard?corpname=preloaded%2Fhrwac22_ws (accessed on 20 March 2025).
- De Schryver, G.M. Generative AI and Lexicography: The Current State of the Art Using ChatGPT. Int. J. Lexicogr. 2023, 36, 355–387. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Höder, S. Grammar is Community-Specific: Background and Basic Concepts of Diasystematic Construction Grammar. In Constructions in Contact: Constructional Perspectives on Contact Phenomena in Germanic Languages; Boas, H.C., Höder, S., Eds.; John Benjamins Publishing Company: Amsterdam, The Netherlands, 2018; pp. 37–70. [Google Scholar] [CrossRef]
- Liu, Z.; Qiao, A.; Neiswanger, W.; Wang, H.; Tan, B.; Tao, T.; Li, J.; Wang, Y.; Sun, S.; Pangarkar, O.; et al. LLM360: Towards Fully Transparent Open-Source LLMs. arXiv 2023, arXiv:2312.06550. [Google Scholar]
Notation | Denotation |
---|---|
a selected corpus, for ; | |
a selected sentiment dictionary, for ; | |
a category from one of the selected sentiment dictionaries, for ; | |
the corresponding sentiment dictionary, of which c is a category; | |
the set of part-of-speech tags suitable for sentiment assignment; | |
the set of all part-of-speech tags of the lexeme a in the selected corpora; | |
the set of lexemes from selected corpora with part-of-speech tags in ; | |
the set of lempos from selected corpora with part-of-speech tags in ; | |
the set of lexemes that have a sentiment score in category , for ; | |
the set of lemexes that have a sentiment score in category together with their tags, for ; | |
the set of lempos that have a sentiment score in category , which do not appear in the selected corpora, for ; | |
the set of lexemes of dictionary S together with their tags, i.e., lempos of S; | |
the set of lexemes of S with multiple pos-tags; | |
x, j) | the original sentiment value of lemma x in category j of a pos-untagged dictionary; |
x-t, j) | the original sentiment value of lempos x-t in category j of a pos-tagged dictionary; |
the set of node lexemes of graph; | |
the number of nodes in the graph for which the sentiment value in category j of S is undefined, for ; | |
the number of nodes in the graph for which the sentiment value in category j of S is defined, for ; | |
the proportion of nodes in the graph for which the sentiment value in category j of S is defined, rounded to two decimal places, for ; | |
the sentiment value of lempos in category of S, for |
Metric | Count |
---|---|
Number of nodes | 990,327 |
Number of edges | 11,778,373 |
Number of nodes with sentic values | 11,726 |
Nouns | 6121 |
Adjectives | 2533 |
Adverbs | 1450 |
Verbs | 1622 |
Number of nodes with calculated values | 953,482 |
Nouns | 536,079 |
Adjectives | 185,591 |
Adverbs | 25,529 |
Verbs | 206,283 |
Number of nodes without calculated values | 25,119 |
Nouns | 24,761 |
Adjectives | 174 |
Adverbs | 35 |
Verbs | 149 |
Lempos | Graph-Based Propagation Algorithm | GPT-4 |
---|---|---|
dio-n (part-n) | 0 | |
ruka-n (hand-n) | ||
aktivnost-n (activity-n) | ||
gubitak-n (loss-n) | ||
volja-n (will-n) | ||
komentar-n (comment-n) | ||
obveza-n (obligation-n) | ||
ekran-n (screen-n) |
ADV Proportion | Count | ADV Proportion | Count | ||
---|---|---|---|---|---|
0 | 1.00 | 118,134 | 30 | 0.67 | 9688 |
1 | 0.96 | 3 | 31 | 0.66 | 744 |
2 | 0.95 | 7 | 32 | 0.65 | 2385 |
3 | 0.94 | 20 | 33 | 0.64 | 13,440 |
4 | 0.93 | 19 | 34 | 0.63 | 1577 |
5 | 0.92 | 1081 | 35 | 0.62 | 4421 |
6 | 0.91 | 1247 | 36 | 0.61 | 2688 |
7 | 0.90 | 1146 | 37 | 0.60 | 7663 |
8 | 0.89 | 1358 | 38 | 0.59 | 4135 |
9 | 0.88 | 3864 | 39 | 0.58 | 4576 |
10 | 0.87 | 263 | 40 | 0.57 | 6497 |
11 | 0.86 | 346,032 | 41 | 0.56 | 4841 |
12 | 0.85 | 18,665 | 42 | 0.55 | 3980 |
13 | 0.84 | 8876 | 43 | 0.54 | 3548 |
14 | 0.83 | 22,724 | 44 | 0.53 | 2061 |
15 | 0.82 | 11,440 | 45 | 0.52 | 1195 |
16 | 0.81 | 12,502 | 46 | 0.51 | 232 |
17 | 0.80 | 23,219 | 47 | 0.50 | 3403 |
18 | 0.79 | 28,875 | 48 | 0.47 | 1 |
19 | 0.78 | 24,684 | 49 | 0.46 | 4 |
20 | 0.77 | 56,362 | 50 | 0.45 | 2 |
21 | 0.76 | 17,049 | 51 | 0.44 | 24 |
22 | 0.75 | 35,588 | 52 | 0.43 | 1 |
23 | 0.74 | 13,986 | 53 | 0.40 | 10 |
24 | 0.73 | 15,289 | 54 | 0.38 | 5 |
25 | 0.72 | 11,021 | 55 | 0.33 | 10 |
26 | 0.71 | 45,660 | 56 | 0.25 | 1 |
27 | 0.70 | 6020 | 57 | 0.22 | 2 |
28 | 0.69 | 5749 | 58 | 0.00 | 43,082 |
29 | 0.68 | 2383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban Kirigin, T.; Bujačić Babić, S.; Perak, B. Graph-Based Lexical Sentiment Propagation Algorithm. Mathematics 2025, 13, 1141. https://doi.org/10.3390/math13071141
Ban Kirigin T, Bujačić Babić S, Perak B. Graph-Based Lexical Sentiment Propagation Algorithm. Mathematics. 2025; 13(7):1141. https://doi.org/10.3390/math13071141
Chicago/Turabian StyleBan Kirigin, Tajana, Sanda Bujačić Babić, and Benedikt Perak. 2025. "Graph-Based Lexical Sentiment Propagation Algorithm" Mathematics 13, no. 7: 1141. https://doi.org/10.3390/math13071141
APA StyleBan Kirigin, T., Bujačić Babić, S., & Perak, B. (2025). Graph-Based Lexical Sentiment Propagation Algorithm. Mathematics, 13(7), 1141. https://doi.org/10.3390/math13071141