Coevolutionary Algorithm with Bayes Theorem for Constrained Multiobjective Optimization
Abstract
:1. Introduction
- 1.
- We propose a Bayesian-based environment selection model that utilizes objective function values and constraint violations to estimate fitness. The fitness values are then converted into selection probabilities via the softmax function, enhancing adaptability across different problems.
- 2.
- To mitigate the high computational cost of dual-population models, we propose a Bayesian-based population size adjustment strategy. By leveraging objective function values and Bayesian inference, the model estimates the rate of change in objective values and dynamically adjusts offspring allocation between the main and auxiliary populations, optimizing resource efficiency.
- 3.
- Comparative evaluations between BTCMO and seven CMOEAs across three test sets and 12 real-world problems indicate that BTCMO exhibits the most balanced and superior performance.
2. Research and Review of Existing CMOEAs
2.1. Optimization Model Based on Gradual Evolution
2.2. Optimization Model Based on Multi-Population
2.3. Optimization Model Based on Multi-Stage Models
3. Proposed Algorithm
3.1. Framework
Algorithm 1 Evolutionary process of BTCMO |
Input: NP: population size; MaxFES: maximal number of fitness evaluations Output: The feasible Pareto optimal solutions
|
3.2. Constrained Dominance Principle
- If , then x dominates y.
- If , then dominance follows Pareto dominance.
- and denote the constraint violation values of solutions x and y, respectively. If two solutions exhibit identical constraint violations, Pareto dominance is determined as follows:
- .
- .
3.3. Auxiliary Environment Selection Model
3.4. Population Quantity Adjustment Strategy
3.5. Search Algorithm
3.6. Complexity Analysis
4. Experimental Setup
5. Experimental Analysis
5.1. Comparison on CF Test Set
5.2. Comparison on the LIR-CMOP Test Set
5.3. Comparison on MW Test Set
5.4. Convergence Speed Analysis
5.5. Diversity Analysis
5.6. Real-World Problem Testing Results
5.7. Statistics and Testing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Wang, Y. Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and Its Application. IEEE Trans. Cybern. 2023, 53, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
- Jozefowiez, N.; Semet, F.; Talbi, E.G. Multi-objective vehicle routing problems. Eur. J. Oper. Res. 2008, 189, 293–309. [Google Scholar] [CrossRef]
- Ray, T.; Tai, K.; Seow, K. Multiobjective design optimization by an evolutionary algorithm. Eng. Optim. 2001, 33, 399–424. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Tian, Y.; Li, C.; Yue, D. Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system. Swarm Evol. Comput. 2024, 87, 101525. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, J.; Yu, K.; Ban, X.; Yue, C.; Qu, B.; Suganthan, P.N. Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems. IEEE/CAA J. Autom. Sin. 2024, 11, 1819–1835. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Zhen, H.; Wang, L.; Gao, L. Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems. Eng. Appl. Artif. Intell. 2024, 135, 108673. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Li, G.; Zhang, W.; Yen, G.G. Manifold-assisted coevolutionary algorithm for constrained multi-objective optimization. Swarm Evol. Comput. 2024, 91, 101717. [Google Scholar] [CrossRef]
- Qiao, K.; Chen, Z.; Qu, B.; Yu, K.; Yue, C.; Chen, K.; Liang, J. A dual-population evolutionary algorithm based on dynamic constraint processing and resources allocation for constrained multi-objective. Expert Syst. Appl. 2024, 238, 121707. [Google Scholar] [CrossRef]
- He, Z.; Liu, H. A dual-population auxiliary multiobjective coevolutionary algorithm for constrained multiobjective optimization problems. Appl. Soft Comput. 2024, 163, 111827. [Google Scholar] [CrossRef]
- Chu, X.; Ming, F.; Gong, W. Competitive Multitasking for Computational Resource Allocation in Evolutionary Constrained Multi-Objective Optimization. IEEE Trans. Evol. Comput. 2024. [Google Scholar] [CrossRef]
- Wang, B.C.; Li, H.X.; Li, J.P.; Wang, Y. Composite Differential Evolution for Constrained Evolutionary Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1482–1495. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, H.L.; Ong, Y.S.; He, Z. Indicator-Based Evolutionary Algorithm for Solving Constrained Multiobjective Optimization Problems. IEEE Trans. Evol. Comput. 2022, 26, 379–391. [Google Scholar] [CrossRef]
- Jiao, R.; Xue, B.; Zhang, M. A Multiform Optimization Framework for Constrained Multiobjective Optimization. IEEE Trans. Cybern. 2023, 53, 5165–5177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, Y.; Jiang, H.; Zhang, X.; Jin, Y. Design and analysis of helper-problem-assisted evolutionary algorithm for constrained multiobjective optimization. Inf. Sci. 2023, 648, 119547. [Google Scholar] [CrossRef]
- Zuo, M.; Xue, Y. Population Feasibility State Guided Autonomous Constrained Multi-Objective Evolutionary Optimization. Mathematics 2024, 12, 913. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Wang, L.; Lu, C. A tri-population based co-evolutionary framework for constrained multi-objective optimization problems. Swarm Evol. Comput. 2022, 70, 101055. [Google Scholar]
- Zhou, J.; Zhang, Y.; Suganthan, P. Dual population approximate constrained Pareto front for constrained multiobjective optimization. Inf. Sci. 2023, 648, 119591. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Hou, Z.; Zou, J.; Zheng, J. A novel multi-population evolutionary algorithm based on hybrid collaboration for constrained multi-objective optimization. Swarm Evol. Comput. 2024, 87, 101581. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Lin, Q.; Chen, J. Coevolutionary multitasking for constrained multiobjective optimization. Swarm Evol. Comput. 2024, 91, 101727. [Google Scholar] [CrossRef]
- Dong, J.; Gong, W.; Ming, F.; Wang, L. A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization. Expert Syst. Appl. 2022, 195, 116499. [Google Scholar]
- Ma, Y.; Shen, B.; Pan, A. Constrained evolutionary optimization based on dynamic knowledge transfer. Expert Syst. Appl. 2024, 240, 122450. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Jin, Y. Even Search in a Promising Region for Constrained Multi-Objective Optimization. IEEE/CAA J. Autom. Sin. 2024, 11, 474–486. [Google Scholar] [CrossRef]
- Low, A.K.Y.; Mekki-Berrada, F.; Gupta, A.; Ostudin, A.; Xie, J.; Vissol-Gaudin, E.; Lim, Y.F.; Li, Q.; Ong, Y.S.; Khan, S.A. Evolution-guided Bayesian optimization for constrained multi-objective optimization in self-driving labs. NPJ Comput. Mater. 2024, 10, 104. [Google Scholar] [CrossRef]
- Lv, Y.; Li, K.; Zhao, H.; Lei, H. A Multi-Stage Constraint-Handling Multi-Objective Optimization Method for Resilient Microgrid Energy Management. Appl. Sci. 2024, 14, 3253. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Song, W. A New Fitness Function with Two Rankings for Evolutionary Constrained Multiobjective Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 5005–5016. [Google Scholar] [CrossRef]
- Wang, H.; Cai, T.; Pedrycz, W. Kriging Surrogate Model-Based Constraint Multiobjective Particle Swarm Optimization Algorithm. IEEE Trans. Cybern. 2025, 55, 1224–1237. [Google Scholar] [CrossRef]
- Meng, X.; Li, H. An adaptive co-evolutionary competitive particle swarm optimizer for constrained multi-objective optimization problems. Swarm Evol. Comput. 2024, 91, 101746. [Google Scholar] [CrossRef]
- Zhao, S.; Hao, X.; Chen, L.; Yu, T.; Li, X.; Liu, W. Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization. Swarm Evol. Comput. 2025, 92, 101784. [Google Scholar] [CrossRef]
- Li, G.; Zhang, W.; Yue, C.; Yen, G.G. Clustering-based evolutionary algorithm for constrained multimodal multi-objective optimization. Swarm Evol. Comput. 2024, 91, 101714. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, J.; Yu, K.; Yue, C.; Lin, H.; Zhang, D.; Qu, B. Evolutionary Constrained Multiobjective Optimization: Scalable High-Dimensional Constraint Benchmarks and Algorithm. IEEE Trans. Evol. Comput. 2024, 28, 965–979. [Google Scholar] [CrossRef]
- Qiao, K.; Yu, K.; Qu, B.; Liang, J.; Song, H.; Yue, C.; Lin, H.; Tan, K.C. Dynamic Auxiliary Task-Based Evolutionary Multitasking for Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2023, 27, 642–656. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, Z.; Yen, G.; Zhang, L. Two-Stage Multiobjective Evolution Strategy for Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2024, 28, 17–31. [Google Scholar] [CrossRef]
- Fan, Z.; Li, W.; Cai, X.; Huang, H.; Fang, Y.; You, Y.; Mo, J.; Wei, C.; Goodman, E. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions. Soft Comput. 2019, 23, 12491–12510. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y. Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons. IEEE Trans. Evol. Comput. 2019, 23, 972–986. [Google Scholar] [CrossRef]
- Ma, L.; Huang, M.; Yang, S.; Wang, R.; Wang, X. An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization. IEEE Trans. Cybern. 2022, 52, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Tan, S.; Wang, H. A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Appl. Soft Comput. 2019, 80, 42–56. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wang, Y. Handling Constrained Multiobjective Optimization Problems with Constraints in Both the Decision and Objective Spaces. IEEE Trans. Evol. Comput. 2019, 23, 870–884. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Fu, G.; Yao, X. Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2019, 23, 303–315. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Zhen, H.; Li, S.; Wang, L.; Liao, Z. A simple two-stage evolutionary algorithm for constrained multi-objective optimization. Knowl.-Based Syst. 2021, 228, 107263. [Google Scholar] [CrossRef]
- Sun, R.; Zou, J.; Liu, Y.; Yang, S.; Zheng, J. A Multistage Algorithm for Solving Multiobjective Optimization Problems with Multiconstraints. IEEE Trans. Evol. Comput. 2023, 27, 1207–1219. [Google Scholar] [CrossRef]
- Zou, J.; Sun, R.; Yang, S.; Zheng, J. A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems. Inf. Sci. 2021, 579, 89–102. [Google Scholar]
- He, C.; Li, M.; Zhang, C.; Chen, H.; Zhong, P.; Li, Z.; Li, J. A self-organizing map approach for constrained multi-objective optimization problems. Complex Intell. Syst. 2022, 8, 5355–5375. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Kumar, A.; Wu, G.; Ali, M.Z.; Luo, Q.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A Benchmark-Suite of real-World constrained multi-objective optimization problems and some baseline results. Swarm Evol. Comput. 2021, 67, 100961. [Google Scholar] [CrossRef]
TSTI | BiCo | CTAEA | CTSEA | C3M | CAEAD | CMOSMA | BTCMO | |
---|---|---|---|---|---|---|---|---|
CF1 | 5.08 (2.90 )+ | 3.91 (2.18 )+ | 6.78 (2.09 )+ | 2.10 (2.97 )+ | 4.69 (6.63 )- | 3.99 (7.40 )- | 5.95 (3.08 )- | 7.35 (4.81 ) |
CF2 | 1.73 (1.79 )+ | 1.46 (2.60 )+ | 1.50 (3.30 )+ | 1.60 (2.77 )+ | 6.28 (4.66 )+ | 7.09 (4.81 )+ | 1.05 (1.36 )+ | 5.34 (4.65 ) |
CF3 | 5.56 (1.50 )+ | 4.87 (1.12 )+ | 4.30 (1.32 )+ | 4.23 (1.06 )+ | 4.71 (8.79 )+ | 5.19 (3.22 )+ | 3.24 (6.28 )+ | 9.27 (2.09 ) |
CF4 | 5.09 (7.68 )+ | 4.18 (7.75 )+ | 4.56 (6.78 )+ | 4.24 (9.02 )+ | 3.73 (1.07 )+ | 3.00 (5.06 )+ | 2.68 (8.52 )+ | 1.43 (2.24 ) |
CF5 | 6.29 (3.25 )+ | 6.28 (2.61 )+ | 6.06 (3.77 )+ | 6.30 (2.43 )+ | 3.93 (5.96 )+ | 5.44 (4.55 )+ | 5.96 (5.26 )+ | 2.97 (3.75 ) |
CF6 | 4.54 (3.35 )+ | 4.67 (2.09 )+ | 4.22 (2.30 )+ | 4.06 (3.06 )+ | 2.22 (2.68 )+ | 2.40 (1.54 )+ | 3.69 (4.13 )+ | 1.13 (1.67 ) |
CF7 | 6.33 (1.12 )+ | 5.71 (9.79 )+ | 6.49 (1.08 )+ | 6.17 (7.04 )+ | 6.56 (9.48 )+ | 7.63 (8.72 )+ | 5.45 (9.32 )+ | 2.55 (4.23 ) |
CF8 | NaN (0.00%)+ | NaN (0.00%)+ | 6.53 (3.94 )+ | 4.40 (3.31 )+ | 7.72 (7.93 )+ | 8.30 (9.33 )+ | 4.23 (2.49 )+ | 1.61 (8.58 ) |
CF9 | 8.59 (1.46 )+ | 9.30 (3.20 )+ | 2.80 (2.09 )+ | 1.97 (4.79 )+ | 3.19 (3.42 )+ | 3.46 (5.35 )+ | 2.12 (7.33 )+ | 8.77 (2.90 ) |
CF10 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (73.99%)+ | NaN (93.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 4.35 (4.46 )+ | 1.31 (1.94 ) |
+/-/= | 10/0/0 | 10/0/0 | 10/0/0 | 10/0/0 | 9/1/0 | 9/1/0 | 9/1/0 | |
LIR-CMOP1 | 2.53 (1.59 )+ | 2.46 (1.50 )+ | NaN (0.20%)+ | 3.88 (2.83 )+ | 3.02 (2.59 )+ | 9.13 (1.53 )+ | 3.27 (1.69 )+ | 6.71 (6.90 ) |
LIR-CMOP2 | 2.23 (1.14 )+ | 2.13 (1.00 )+ | NaN (1.20%)+ | 3.22 (1.93 )+ | 2.87 (3.15 )+ | 3.81 (9.93 )- | 2.67 (2.49 )+ | 6.78 (5.01 ) |
LIR-CMOP3 | 2.70 (1.90 )+ | 2.71 (6.18 )+ | NaN (0.00%)+ | 3.55 (1.67 )+ | NaN (96.67%)+ | 7.22 (1.48 )= | 3.28 (2.29 )+ | 7.03 (7.39 ) |
LIR-CMOP4 | 2.57 (1.80 )+ | 2.56 (6.42 )+ | NaN (0.00%)+ | 3.32 (1.55 )+ | 3.41 (4.69 )+ | 8.07 (1.50 )- | 3.13 (9.47 )+ | 9.50 (9.60 ) |
LIR-CMOP5 | 1.23 (1.96 )+ | 1.23 (1.33 )+ | 1.26 (6.89 )+ | 3.76 (1.76 )+ | 6.75 (4.79 )+ | 1.21 (1.32 )+ | 3.42 (2.24 )+ | 1.87 (3.24 ) |
LIR-CMOP6 | 1.35 (1.27 )+ | 1.35 (9.39 )+ | 1.35 (8.05 )+ | 4.53 (4.48 )+ | 3.40 (3.64 )= | 1.05 (3.71 )+ | 3.84 (3.64 )+ | 2.00 (4.18 ) |
LIR-CMOP7 | 2.42 (2.73 )+ | 1.68 (3.31 )+ | 1.02 (6.03 )+ | 1.69 (1.61 )+ | 4.86 (4.52 )- | 1.27 (2.72 )+ | 1.42 (1.41 )+ | 8.98 (9.59 ) |
LIR-CMOP8 | 1.21 (6.29 )+ | 1.68 (2.09 )+ | 1.69 (1.13 )+ | 2.80 (1.92 )+ | 4.53 (4.81 )- | 1.66 (4.30 )+ | 2.10 (2.16 )+ | 1.20 (1.64 ) |
LIR-CMOP9 | 6.72 (5.34 )+ | 1.08 (3.19 )+ | 6.65 (9.28 )+ | 9.51 (7.89 )+ | 4.89 (3.35 )+ | 5.29 (1.87 )+ | 6.46 (2.41 )+ | 9.40 (1.42 ) |
LIR-CMOP10 | 9.07 (6.18 )+ | 1.05 (1.55 )+ | 4.40 (1.77 )+ | 5.75 (6.12 )+ | 2.94 (9.10 )+ | 3.56 (7.10 )+ | 2.80 (5.58 )+ | 1.49 (1.94 ) |
LIR-CMOP11 | 7.66 (1.08 )+ | 9.70 (4.39 )+ | 3.18 (1.35 )+ | 4.97 (8.25 )+ | 1.73 (7.07 )+ | 2.54 (5.57 )+ | 1.22 (2.69 )+ | 7.25 (6.36 ) |
LIR-CMOP12 | 4.16 × 10−1 (8.95 × 10−2)+ | 9.69 × 10−1 (3.98 × 10−2)+ | 4.83 × 10−1 (8.94 × 10−2)+ | 5.95 × 10−1 (4.45 × 10−2)+ | 1.78 × 10−1 (2.74 × 10−2)+ | 2.81 × 10−1 (1.59 × 10−2)+ | 3.19 × 10−1 (4.81 × 10−2)+ | 3.22 × 10−2 (4.79 × 10−3) |
LIR-CMOP13 | 1.32 (6.28 )+ | 1.32 (1.42 )+ | 1.13 (1.27 )+ | 9.48 (6.83 )+ | 3.62 (3.38 )+ | 3.38 (2.63 )+ | 9.61 (5.51 )+ | 9.35 (9.96 ) |
LIR-CMOP14 | 1.27 (1.01 )+ | 1.28 (1.23 )+ | 1.13 (9.52 )+ | 9.67 (3.36 )+ | 1.98 (2.09 )+ | 2.59 (7.83 )+ | 9.79 (5.39 )+ | 9.60 (1.32 ) |
+/-/= | 14/0/0 | 14/0/0 | 14/0/0 | 14/0/0 | 11/2/1 | 11/2/1 | 14/0/0 | |
MW1 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 2.20 (7.37 ) |
MW2 | 1.45 (4.89 )+ | 3.97 (6.51 )+ | 5.77 (2.64 )+ | 7.87 (3.87 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 3.50 (9.18 )+ | 1.90 (1.64 ) |
MW3 | 1.38 (9.39 )+ | 8.89 (6.85 )+ | 7.21 (3.55 )+ | 7.30 (7.88 )+ | 1.32 (2.34 )+ | 1.63 (1.86 )+ | 6.80 (4.48 )+ | 4.43 (6.33 ) |
MW4 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 4.57 (1.34 ) |
MW5 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 5.41 (3.47 ) |
MW6 | 5.45 (8.89 )+ | 4.19 (8.95 )+ | 1.04 (1.41 )+ | 2.89 (1.94 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 5.34 (7.80 )+ | 1.50 (3.59 ) |
MW7 | 5.17 (2.36 )+ | 8.28 (5.79 )+ | 8.40 (2.95 )+ | 6.34 (3.52 )- | 9.93 (7.80 )+ | 1.14 (5.83 )+ | 7.38 (5.58 )+ | 7.01 (5.74 ) |
MW8 | NaN (86.67%)+ | 5.70 (5.56 )+ | 8.09 (2.29 )+ | 8.51 (2.98 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 5.72 (6.09 )+ | 4.94 (1.33 ) |
MW9 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (83.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (96.67%)+ | 8.98 (1.22 ) |
MW10 | NaN (46.67%)+ | 1.55 (5.28 )+ | 1.22 (1.01 )+ | NaN (83.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 1.15 (1.06 )+ | 2.53 (5.93 ) |
MW11 | 2.49 (3.29 )- | 1.34 (2.32 )- | 1.64 (1.63 )+ | 6.50 (2.38 )- | NaN (83.33%)+ | 6.98 (1.18 )- | 8.06 (8.20 )- | 1.23 (5.55 ) |
MW12 | NaN (0.00%)+ | NaN (60.17%)+ | NaN (76.67%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (83.33%)+ | 6.92 (7.68 ) |
MW13 | 4.29 (1.48 )+ | 1.80 (2.52 )+ | 1.28 (1.60 )+ | 1.67 (6.53 )+ | 1.68 (2.88 )+ | 2.12 (3.69 )+ | 1.16 (2.50 )+ | 5.97 (1.17 ) |
MW14 | 2.99 (7.69 )+ | 3.98 (5.49 )+ | 3.26 (7.34 )+ | 3.37 (6.59 )+ | 7.41 (3.41 )+ | 9.08 (3.98 )+ | 4.93 (5.00 )+ | 1.45 (4.24 ) |
+/-/= | 13/1/0 | 13/1/0 | 14/0/0 | 12/2/0 | 14/0/0 | 13/1/0 | 13/1/0 |
TSTI | BiCo | CTAEA | CTSEA | C3M | CAEAD | CMOSMA | BTCMO | |
---|---|---|---|---|---|---|---|---|
CF1 | 5.03 (3.48 )+ | 5.17 (2.59 )+ | 4.89 (2.19 )+ | 5.39 (2.72 )+ | 5.60 (8.03 )- | 5.61 (9.09 )- | 5.58 (4.36 )- | 5.56 (6.59 ) |
CF2 | 4.82 (3.34 )+ | 5.01 (2.79 )+ | 5.09 (3.38 )+ | 5.04 (2.81 )+ | 5.92 (8.79 )= | 5.78 (7.57 )+ | 5.53 (2.06 )+ | 5.98 (2.23 ) |
CF3 | 9.80 (3.24 )+ | 1.21 (3.84 )+ | 1.30 (4.25 )+ | 1.37 (4.41 )+ | 6.54 (3.54 )+ | 2.50 (1.81 )+ | 1.88 (2.72 )+ | 2.58 (1.41 ) |
CF4 | 1.65 (4.55 )+ | 2.17 (5.33 )+ | 2.00 (4.43 )+ | 2.09 (5.10 )+ | 2.10 (7.42 )+ | 2.27 (5.10 )+ | 2.91 (6.15 )+ | 3.63 (2.64 ) |
CF5 | 1.15 (1.98 )+ | 1.17 (1.48 )+ | 1.26 (2.39 )+ | 1.13 (1.42 )+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 1.25 (3.65 )+ | 2.91 (2.11 ) |
CF6 | 3.53 (7.41 )+ | 3.54 (1.65 )+ | 3.84 (4.69 )+ | 4.00 (2.50 )+ | 4.96 (2.42 )+ | 4.54 (2.26 )+ | 4.31 (3.52 )+ | 5.87 (1.48 ) |
CF7 | 1.67 (8.35 )+ | 2.11 (9.66 )+ | 1.82 (8.44 )+ | 1.71 (7.03 )+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 2.53 (9.21 )+ | 4.09 (4.99 ) |
CF8 | NaN (0.00%)+ | NaN (0.00%)+ | 1.07 (1.40 )+ | 1.55 (4.46 )+ | 1.14 (9.27 )+ | 6.04 (7.23 )+ | 1.21 (3.71 )+ | 3.48 (2.33 ) |
CF9 | 9.14 (1.88 )+ | 9.09 (2.77 )+ | 1.70 (2.68 )+ | 2.67 (9.89 )+ | 1.22 (3.20 )+ | 9.48 (3.26 )+ | 2.46 (9.61 )+ | 4.00 (1.62 ) |
CF10 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (73.99%)+ | NaN (93.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 1.01 (1.98 )+ | 3.19 (6.23 ) |
+/-/= | 10/0/0 | 10/0/0 | 10/0/0 | 10/0/0 | 8/1/1 | 9/1/0 | 9/1/0 | |
LIR-CMOP1 | 1.29 (9.39 )+ | 1.28 (5.92 )+ | NaN (0.20%)+ | 9.95 (1.20 )+ | 1.10 (1.04 )+ | 1.94 (9.44 )= | 1.05 (5.90 )+ | 1.97 (5.10 ) |
LIR-CMOP2 | 2.54 (1.06 )+ | 2.47 (8.80 )+ | NaN (1.20%)+ | 2.07 (1.11 )+ | 1.98 (2.00 )+ | 3.37 (6.94 )- | 2.27 (1.41 )+ | 3.23 (5.06 ) |
LIR-CMOP3 | 1.13 (1.09 )+ | 1.12 (5.33 )+ | NaN (0.00%)+ | 9.21 (5.53 )+ | NaN (96.67%)+ | 1.74 (6.52 )= | 9.63 (8.63 )+ | 1.74 (3.77 ) |
LIR-CMOP4 | 2.09 (8.17 )+ | 2.04 (7.79 )+ | NaN (0.00%)+ | 1.77 (1.32 )+ | 1.80 (3.53 )+ | 2.79 (7.72 )- | 1.85 (7.94 )+ | 2.77 (5.68 ) |
LIR-CMOP5 | 0.00 (0.00)+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 1.25 (6.34 )+ | 1.11 (1.12 )= | 0.00 (0.00)+ | 1.37 (8.69 )+ | 1.96 (1.24 ) |
LIR-CMOP6 | 0.00 (0.00)+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 9.72 (2.76 )+ | 1.10 (5.19 )= | 2.20 (2.90 )+ | 1.10 (7.72 )+ | 1.33 (1.18 ) |
LIR-CMOP7 | 2.21 (4.23 )+ | 0.00 (0.00)+ | 8.83 (8.29 )+ | 2.34 (4.40 )+ | 2.76 (1.76 )- | 2.45 (8.17 )+ | 2.42 (3.88 )+ | 2.57 (3.26 ) |
LIR-CMOP8 | 7.55 (1.01 )+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 2.21 (2.52 )+ | 2.79 (1.81 )- | 2.38 (1.16 )+ | 2.30 (5.72 )+ | 2.48 (5.66 ) |
LIR-CMOP9 | 2.36 (3.02 )+ | 9.95 (4.58 )+ | 2.76 (4.44 )+ | 2.28 (4.24 )+ | 3.62 (1.29 )+ | 3.20 (1.85 )+ | 2.87 (2.18 )+ | 5.30 (4.59 ) |
LIR-CMOP10 | 9.92 (5.06 )+ | 5.26 (2.53 )+ | 4.61 (1.96 )+ | 2.57 (3.63 )+ | 5.60 (5.39 )+ | 5.16 (3.59 )+ | 5.54 (3.40 )+ | 6.98 (1.94 ) |
LIR-CMOP11 | 2.27 (2.69 )+ | 1.71 (1.09 )+ | 5.56 (7.43 )+ | 3.68 (3.81 )+ | 5.83 (4.74 )+ | 5.58 (4.00 )+ | 6.17 (2.13 )+ | 6.91 (6.30 ) |
LIR-CMOP12 | 4.06 (4.47 )+ | 1.81 (1.44 )+ | 4.20 (1.82 )+ | 4.15 (2.88 )+ | 5.28 (9.55 )+ | 4.73 (1.69 )+ | 4.55 (2.12 )+ | 6.06 (2.57 ) |
LIR-CMOP13 | 1.05 × 10−4 (1.42 × 10−4)+ | 8.11 × 10−5 (1.04 × 10−4)+ | 5.44 × 10−1 (1.62 × 10−3)+ | 5.55 × 10−1 (1.32 × 10−3)+ | 3.50 × 10−1 (1.49 × 10−1)+ | 3.43 × 10−1 (1.23 × 10−1)+ | 5.52 × 10−1 (1.23 × 10−3)+ | 5.60 × 10−1 (3.08 × 10−4) |
LIR-CMOP14 | 5.94 (2.82 )+ | 4.25 (3.17 )+ | 5.45 (9.21 )+ | 5.55 (1.23 )+ | 4.59 (9.44 )+ | 3.80 (6.24 )+ | 5.53 (1.72 )+ | 5.59 (6.46 ) |
+/-/= | 14/0/0 | 14/0/0 | 14/0/0 | 14/0/0 | 10/2/2 | 10/2/2 | 14/0/0 | |
MW1 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 4.89 (1.96 ) |
MW2 | 3.92 (5.43 )+ | 5.25 (9.06 )+ | 5.00 (3.37 )+ | 4.74 (4.82 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 5.32 (1.29 )+ | 5.55 (2.55 ) |
MW3 | 4.56 (6.54 )+ | 5.37 (1.21 )+ | 5.41 (9.87 )+ | 5.40 (1.32 )+ | 5.29 (4.75 )+ | 5.23 (3.37 )+ | 5.40 (7.63 )+ | 5.45 (2.02 ) |
MW4 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 8.36 (1.88 ) |
MW5 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 3.22 (1.80 ) |
MW6 | 9.79 (4.13 )+ | 2.74 (1.02 )+ | 2.44 (4.96 )+ | 1.77 (5.06 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 2.73 (2.44 )+ | 3.09 (4.84 ) |
MW7 | 4.00 (1.15 )+ | 4.05 (1.05 )+ | 4.06 (1.16 )+ | 4.10 (1.18 )= | 4.04 (1.57 )+ | 4.01 (1.53 )+ | 4.11 (1.13 )- | 4.10 (1.01 ) |
MW8 | NaN (86.67%)+ | 5.03 (1.29 )+ | 4.52 (4.57 )+ | 4.44 (5.04 )+ | NaN (0.00%)+ | NaN (0.00%)+ | 5.00 (1.34 )+ | 5.25 (5.89 ) |
MW9 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (83.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (96.67%)+ | 3.92 (3.79 ) |
MW10 | NaN (46.67%)+ | 3.42 (2.82 )+ | 3.63 (4.96 )+ | NaN (83.33%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 3.68 (5.37 )+ | 4.27 (5.56 ) |
MW11 | 3.85 (8.40 )- | 4.11 (6.33 )= | 4.42 (7.41 )+ | 4.47 (4.00 )- | NaN (83.33%)+ | 4.47 (2.47 )- | 4.46 (5.58 )- | 4.46 (4.42 ) |
MW12 | NaN (0.00%)+ | NaN (60.17%)+ | NaN (76.67%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (83.33%)+ | 6.03 (8.81 ) |
MW13 | 2.67 (6.08 )+ | 4.00 (4.41 )+ | 4.10 (1.34 )+ | 3.83 (3.90 )+ | 0.00 (0.00)+ | 0.00 (0.00)+ | 4.22 (1.77 )+ | 4.52 (4.14 ) |
MW14 | 4.04 (3.68 )+ | 3.53 (2.60 )+ | 3.91 (3.64 )+ | 3.92 (3.24 )+ | 1.72 (1.73 )+ | 1.28 (1.72 )+ | 3.19 (3.29 )+ | 4.62 (1.88 ) |
+/-/= | 13/1/0 | 13/0/1 | 14/0/0 | 12/1/1 | 14/0/0 | 13/1/0 | 12/2/0 |
Name | Problem | M | D |
---|---|---|---|
RWMOP1 | Vibrating Platform Design | 2 | 5 |
RWMOP2 | Two Bar Truss Design | 2 | 3 |
RWMOP3 | Speed Reducer Design | 2 | 7 |
RWMOP4 | Gear Train Design | 2 | 4 |
RWMOP5 | Simply Supported I-Beam Design | 2 | 4 |
RWMOP6 | Cantilever Beam Design | 2 | 2 |
RWMOP7 | Crash Energy Management for High-Speed Train | 2 | 6 |
RWMOP8 | Haverly’s Pooling Problem | 2 | 9 |
RWMOP9 | Process Flow Sheeting Problem | 2 | 3 |
RWMOP10 | Two Reactor Problem | 2 | 7 |
RWMOP11 | Process Synthesis Problem | 2 | 7 |
RWMOP12 | Synchronous Optimal Pulse-Width Modulation of 3-Level Inverters | 2 | 25 |
TSTI | BiCo | CTAEA | CTSEA | C3M | CAEAD | CMOSMA | BTCMO | |
---|---|---|---|---|---|---|---|---|
RW-MOP1 | 1.01 (1.82)+ | 9.15 (1.02 )+ | 1.48 (6.35)+ | 9.15 (7.06 )+ | 9.15 (5.53 )+ | 9.15 (3.83 )+ | 9.15 (3.66 )+ | 8.85 (3.07) |
RW-MOP2 | 6.17 (2.75)+ | 2.28 (1.10 )+ | 6.24 (6.93 )+ | 1.03 (5.21)+ | 2.84 (7.54)+ | 3.10 (8.65)+ | 2.42 (1.22 )+ | 6.05(4.23) |
RW-MOP3 | 6.05 (5.71 )+ | 6.06 (2.82 )+ | NaN (11.47%)+ | 6.06 (7.30 )+ | 6.05 (6.90 )+ | 6.05 (7.42 )+ | 7.54 (4.39 )+ | 6.05 (3.27 ) |
RW-MOP4 | 1.55 (6.95 )+ | 1.55 (7.73 )+ | 1.54 (4.30 )+ | 1.55 (7.62 )+ | 1.55 (2.46 )+ | 1.55 (4.19 )+ | 1.55 (6.00 )+ | 1.21 (1.81) |
RW-MOP5 | 3.93 (5.35 )+ | 3.94 (8.48 )+ | 3.87 (7.10 )+ | 3.72 (5.03 )+ | 3.85 (5.01 )+ | 3.81 (5.38 )+ | 4.12 (6.47 )+ | 2.92 (1.56 ) |
RW-MOP6 | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 )= | 2.00 (1.32 ) |
RW-MOP7 | 1.61 (2.94 )+ | 1.76 (6.41 )+ | 1.62 (1.03 )+ | 1.61 (7.06 )+ | 1.61 (7.06 )+ | 1.61 (7.06 )+ | 1.61 (7.06 )+ | 1.61 (6.70 ) |
RW-MOP8 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (90.00%)+ | 2.00 (1.37 )+ | NaN (0.00%)+ | 1.28 (9.25 ) |
RW-MOP9 | 9.90 (4.23 )+ | 9.90 (7.39 )+ | 1.02 (6.31 )+ | 9.90 (3.91 )+ | 9.90 (2.10 )+ | 9.90 (1.89 )+ | 9.90 (2.78 )+ | 9.90 (1.67 ) |
RW-MOP10 | 3.18 (1.85)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 1.92(3.62 ) |
RW-MOP11 | 9.27 (2.96 )+ | 9.27 (2.10 )+ | 9.33 (4.30 )+ | 9.72 (6.96 )+ | 9.27 (3.55 )+ | 9.27 (7.27 )+ | 9.31 (2.09 )+ | 9.01(1.18 ) |
RW-MOP12 | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | NaN (0.00%)+ | 1.08 (8.76 ) |
+/-/= | 11/0/1 | 11/0/1 | 11/0/1 | 11/0/1 | 11/0/1 | 11/0/1 | 11/0/1 |
BTCMO-VS | p | Level = 0.05 | ||
---|---|---|---|---|
TSTI | 687 | 54 | 0.000002 | YES |
BiCo | 679 | 62 | 0.000004 | YES |
CTAEA | 691 | 50 | 0.000000 | YES |
CTSEA | 693 | 48 | 0.000002 | YES |
C3M | 593 | 148 | 0.000642 | YES |
CAEAD | 578 | 163 | 0.001341 | YES |
CMOSMA | 707 | 34 | 0.000001 | YES |
BTCMO-VS | p | Level = 0.05 | ||
---|---|---|---|---|
TSTI | 740 | 1 | 0.000000 | YES |
BiCo | 740 | 1 | 0.000000 | YES |
CTAEA | 741 | 0 | 0.000000 | YES |
CTSEA | 739 | 2 | 0.000000 | YES |
C3M | 720 | 21 | 0.000000 | YES |
CAEAD | 720 | 21 | 0.000000 | YES |
CMOSMA | 735 | 6 | 0.000000 | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Jia, H.; Li, Y.; Shi, Q. Coevolutionary Algorithm with Bayes Theorem for Constrained Multiobjective Optimization. Mathematics 2025, 13, 1191. https://doi.org/10.3390/math13071191
Zhao S, Jia H, Li Y, Shi Q. Coevolutionary Algorithm with Bayes Theorem for Constrained Multiobjective Optimization. Mathematics. 2025; 13(7):1191. https://doi.org/10.3390/math13071191
Chicago/Turabian StyleZhao, Shaoyu, Heming Jia, Yongchao Li, and Qian Shi. 2025. "Coevolutionary Algorithm with Bayes Theorem for Constrained Multiobjective Optimization" Mathematics 13, no. 7: 1191. https://doi.org/10.3390/math13071191
APA StyleZhao, S., Jia, H., Li, Y., & Shi, Q. (2025). Coevolutionary Algorithm with Bayes Theorem for Constrained Multiobjective Optimization. Mathematics, 13(7), 1191. https://doi.org/10.3390/math13071191