Quantization for a Condensation System
Abstract
:1. Introduction
2. Preliminaries
3. Quantization for a Condensation Measure Associated with a Discrete Distribution
3.1. Essential Lemmas and Propositions
3.2. Optimal Sets and the Quantization Error for a Given Sequence
3.3. Asymptotics for the nth Quantization Error
4. Quantization for a Condensation Measure Associated with a Uniform Distribution
4.1. Essential Lemmas and Propositions
4.2. Optimal Sets and the Quantization Error for a Given Sequence
4.3. Asymptotics for the nth Quantization Error
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Facloner, K.J. Techniques in Fractal Geometry; John Wiley & Sons Ltd.: Chichester, UK, 1997. [Google Scholar]
- Graf, S.; Luschgy, H. Foundations of Quantization for Probability Distributions; Lecture Notes in Mathematics 1730; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Abaya, E.F.; Wise, G.L. Some remarks on the existence of optimal quantizers. Stat. Probab. Lett. 1984, 2, 349–351. [Google Scholar] [CrossRef]
- Gersho, A.; Gray, R.M. Vector Quantization and Signal Compression; Kluwer Academy publishers: Boston, MA, USA, 1992. [Google Scholar]
- Gray, R.M.; Kieffer, J.C.; Linde, Y. Locally optimal block quantizer design. Inf. Control 1980, 45, 178–198. [Google Scholar] [CrossRef]
- György, A.; Linder, T. On the structure of optimal entropy-constrained scalar quantizers. IEEE Trans. Inf. Theory 2002, 48, 416–427. [Google Scholar] [CrossRef]
- Gray, R.; Neuhoff, D. Quantization. IEEE Trans. Inform. Theory 1998, 44, 2325–2383. [Google Scholar] [CrossRef]
- Zam, R. Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information Theory; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Dettmann, C.P.; Roychowdhury, M.K. Quantization for uniform distributions on equilateral triangles. Real Anal. Exch. 2017, 42, 149–166. [Google Scholar] [CrossRef]
- Dai, M.; Liu, Z. The quantization dimension and other dimensions of probability measures. Int. J. Nonlinear Sci. 2008, 5, 267–274. [Google Scholar]
- Facloner, K.J. The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 1994, 7, 681–701. [Google Scholar]
- Graf, S.; Luschgy, H. The Quantization Dimension of Self-Similar Probabilities. Math. Nachr. 2002, 241, 103–109. [Google Scholar] [CrossRef]
- Lindsay, L.J.; Mauldin, R.D. Quantization dimension for conformal iterated function systems. Nonlinearity 2002, 15, 189–199. [Google Scholar] [CrossRef]
- Pötzelberger, K. The quantization dimension of distributions. Math. Proc. Camb. Phil. Soc. 2001, 131, 507–519. [Google Scholar] [CrossRef]
- Rosenblatt, J.; Roychowdhury, M.K. Optimal quantization for piecewise uniform distributions. Unif. Distrib. Theory 2018, 13, 23–55. [Google Scholar] [CrossRef]
- Roychowdhury, M.K. Optimal quantizers for some absolutely continuous probability measures. Real Anal. Exch. 2017, 43, 105–136. [Google Scholar] [CrossRef]
- Roychowdhury, M.K. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discret. Contin. Dyn. Syst. Ser. 2018, 38, 4555–4570. [Google Scholar] [CrossRef]
- Roychowdhury, M.K. Quantization dimension estimate for condensation systems of conformal mappings. Real Anal. Exch. 2013, 38, 317–335. [Google Scholar] [CrossRef]
- Roychowdhury, M.K. Quantization dimension function and ergodic measure with bounded distortion. Bull. Pol. Acad. Sci. Math. 2009, 57, 251–262. [Google Scholar] [CrossRef]
- Zhu, S. Quantization dimension for condensation systems. Math. Z. 2008, 259, 33–43. [Google Scholar] [CrossRef]
- Zhu, S. Asymptotic quantization errors for in-homogeneous self-similar measures supported on self-similar sets. Sci. China Math. 2016, 59, 337–350. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere; Academic Press: New York, NY, USA; London, UK, 1988. [Google Scholar]
- Lasota, A. A variational principle for fractal dimensions. Nonlinear Anal. 2006, 64, 618–628. [Google Scholar] [CrossRef]
- Olsen, L.; Snigireva, N. Multifractal spectra of in-homogenous self-similar measures. Indiana Univ. Math. J. 2008, 57, 1789–1844. [Google Scholar] [CrossRef]
- Liszka, P. The Lq spectra and Rényi dimension of generalized inhomogeneous self-similar measures. Cent. Eur. J. Math. 2014, 12, 1305–1319. [Google Scholar]
- Olsen, L.; Snigireva, N. Lq spectra and Rényi dimensions of in-homogeneous self-similar measures. Nonlinearity 2007, 20, 151–175. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Roychowdhury, M.K.; Verma, M. Quantization dimensions for inhomogeneous bi-Lipschitz iterated function systems. Monatshefte Math. 2025, 207, 125–140. [Google Scholar] [CrossRef]
- Dubey, S.; Roychowdhury, M.K.; Verma, S. Quantization dimension for a generalized inhomogeneous bi-Lipschitz iterated function system. arXiv 2025, arXiv:2503.11105. [Google Scholar]
- Cömez, D. Roychowdhury, M.K. Quantization for uniform distributions on stretched Sierpinski triangles. Monatshefte Math. 2019, 190, 79–100. [Google Scholar] [CrossRef]
- Bucklew, J.A.; Wise, G.L. Multidimensional asymptotic quantization theory with rth power distortion measures. IEEE Trans. Inf. Theory 1982, 28, 239–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, S.; Roychowdhury, M.K.; Verma, S. Quantization for a Condensation System. Mathematics 2025, 13, 1424. https://doi.org/10.3390/math13091424
Dubey S, Roychowdhury MK, Verma S. Quantization for a Condensation System. Mathematics. 2025; 13(9):1424. https://doi.org/10.3390/math13091424
Chicago/Turabian StyleDubey, Shivam, Mrinal Kanti Roychowdhury, and Saurabh Verma. 2025. "Quantization for a Condensation System" Mathematics 13, no. 9: 1424. https://doi.org/10.3390/math13091424
APA StyleDubey, S., Roychowdhury, M. K., & Verma, S. (2025). Quantization for a Condensation System. Mathematics, 13(9), 1424. https://doi.org/10.3390/math13091424