Next Article in Journal
Assisted-Value Factorization with Latent Interaction in Cooperate Multi-Agent Reinforcement Learning
Previous Article in Journal
Evaluating Fiscal and Monetary Policy Coordination Using a Nash Equilibrium: A Case Study of Hungary
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Scrutinizing the General Conic Equation

by
Mauricio Chávez-Pichardo
1,
José Daniel López-Barrientos
2,* and
Saúl Perea-Flores
3
1
TecNM—Tecnológico de Estudios Superiores del Oriente del Estado de México, División de Estudios de Posgrado e Investigación y División de Ingeniería en Energías Renovables, La Paz 56400, Mexico
2
Facultad de Ciencias Actuariales, Universidad Anáhuac Mexico, Naucalpan de Juárez 52786, Mexico
3
PNC Financial Services Group, Texas Division, Dallas, TX 75206, USA
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(9), 1428; https://doi.org/10.3390/math13091428 (registering DOI)
Submission received: 14 March 2025 / Revised: 23 April 2025 / Accepted: 25 April 2025 / Published: 26 April 2025
(This article belongs to the Section B: Geometry and Topology)

Abstract

We present a general formula that transforms any conic of the form Ax2+Bxy+Cy2+Dx+Ey+F=0, with B0, into A(x)2+C(y)2+Dx+Ey+F=0, without requiring the rotation angle θ. This directly eliminates the cross term xy, simplifying the rotated conics analysis. As consequences, we obtain new formulae that remove both rotations and translations, a novel proof of the discriminant criterion, improved expressions for eccentricity, and a detailed taxonomy of all loci described by the general conic equation.
Keywords: analytic geometry; general second-degree equation; rotated conic sections; rotation of the Cartesian axes; degenerate and imaginary conic sections analytic geometry; general second-degree equation; rotated conic sections; rotation of the Cartesian axes; degenerate and imaginary conic sections

Share and Cite

MDPI and ACS Style

Chávez-Pichardo, M.; López-Barrientos, J.D.; Perea-Flores, S. Scrutinizing the General Conic Equation. Mathematics 2025, 13, 1428. https://doi.org/10.3390/math13091428

AMA Style

Chávez-Pichardo M, López-Barrientos JD, Perea-Flores S. Scrutinizing the General Conic Equation. Mathematics. 2025; 13(9):1428. https://doi.org/10.3390/math13091428

Chicago/Turabian Style

Chávez-Pichardo, Mauricio, José Daniel López-Barrientos, and Saúl Perea-Flores. 2025. "Scrutinizing the General Conic Equation" Mathematics 13, no. 9: 1428. https://doi.org/10.3390/math13091428

APA Style

Chávez-Pichardo, M., López-Barrientos, J. D., & Perea-Flores, S. (2025). Scrutinizing the General Conic Equation. Mathematics, 13(9), 1428. https://doi.org/10.3390/math13091428

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop