Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses
Abstract
:1. Introduction
2. Preliminaries
- IαIβf(t) = Iα+ f(t)
- IαIβf(t) = IβIαf(t)
- Iα(f(t) + g(t)) = Iαf(t) + Iαg(t)
- Iα cDαf(t) = f(t) − f(0), 0 < α < 1
- cDαIαf(t) = f(t)
- cDα cDβf(t) ≠ cD(α+β)f(t)
- cDα cDβf(t) ≠ cDβ cDαf(t)
- x(t) is-adapted.
- x(t0 + s) = ϕ(s) when s ∈ [− r; 0], and
3. Existence Results
- (H1) The function f satisfies the Lipschitz condition and there exists a positive constant L1 > 0 such that for x, y ∈ C and t ∈ [τ, T],
- (H2) The function g is continuous and there exists a constant L2 > 0 such that
- (H3) is a continuous bounded linear operator and there exists a constant L3 > 0 such that
- (H4) The functions f and A are continuous and there exist a non-negative constant k such that
- (H5) is uniformly bounded. (i.e.) there is a B > 0 such that
- (H6) There exists a constant N > 0 such that
4. Example
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, the Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Waltham, MA, USA, 1993. [Google Scholar]
- Balachandran, K.; Trujillo, J.J. The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach Spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4587–4593. [Google Scholar]
- Diethelm, K. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar]
- Miller, K.S.; Ross, B. An introduction to the fractional calculus and fractional differential equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar]
- Hernandez, E.; O’Regan, D.; Balachandran, K. On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3462–3471. [Google Scholar]
- Liu, Y.C.; Wu, J.; Li, Z.X. Multiple solutions of some impulsive three point boundary value problems. Dyn. contin. Discrete Impuls. Syst. 2006, 13A, 579–586. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
- Anguraj, A.; Vinodkumar, A. Existence and uniqueness of neutral functional differential equations with random impulses. Int. J. Nonlinear Sci. 2009, 8, 412–418. [Google Scholar]
- Wu, S.; Guo, X.-L.; Lin, S.-Q. Existence and uniqueness of solutions to random impulsive differential systems. Acta Math. Appl. Sin. 2006, 22, 627–632. [Google Scholar]
- Wu, S.J.; Duan, Y.R. Oscillation, stability and boundedness of second-order differential systems with random impulses. Comput. Math. Appl. 2005, 49, 1375–1386. [Google Scholar]
- Anguraj, A.; Vinodkumar, A. Existence, uniqueness and stability results of random impulsive semilinear differential systems. Nonlinear Anal. Hybrid Syst. 2010, 3(3), 475–483. [Google Scholar]
- Anguraj, A.; Wu, S.; Vinodkumar, A. The existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness. Nonlinear Anal. 2011, 74, 331–342. [Google Scholar]
- Benchohra, M.; Slimani, B.A. Existence and Uniqueness of solutions to impulsive fractional differential equations. Electron. J. Differ. Equ. 2009, 10, 1–11. [Google Scholar]
- Benchohra, M.; Seba, D. Impulsive fractional differential equations in Banach Spaces. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 2009, 8, 1–14. [Google Scholar]
- Chuanxi, Q.; Ladas, G. Oscillations of first order neutral equation with variable coefficients. Mh. Math. 1990, 109, 103–111. [Google Scholar]
- Gopalsamy, K. Oscillations in neutral delay differential equations. J. Math. Phys. Sci. 1990, 21, 23–34. [Google Scholar]
- Grove, E.A.; Kulenovic, M.R.S.; Ladas, G. Sufficient conditions for oscillations and non-oscillations of neutral equations. J. Differ. Equ. 1987, 68, 673–682. [Google Scholar]
- Agarwal, R.P.; Zhou, Y.; He, Y.Y. Existence of fractional neutral functional differential equations. Comput. Math. Appl. 2010, 59, 1095–1100. [Google Scholar]
- Anguraj, A.; Ranjini, M.C. Existence results for fractional impulsive neutral functional differential equations. J. Fract. Calc. Appl. 2012, 3(3), 1–12. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguraj, A.; Ranjini, M.C.; Rivero, M.; Trujillo, J.J. Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses. Mathematics 2015, 3, 16-28. https://doi.org/10.3390/math3010016
Anguraj A, Ranjini MC, Rivero M, Trujillo JJ. Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses. Mathematics. 2015; 3(1):16-28. https://doi.org/10.3390/math3010016
Chicago/Turabian StyleAnguraj, Annamalai, Mullarithodi C. Ranjini, Margarita Rivero, and Juan J. Trujillo. 2015. "Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses" Mathematics 3, no. 1: 16-28. https://doi.org/10.3390/math3010016
APA StyleAnguraj, A., Ranjini, M. C., Rivero, M., & Trujillo, J. J. (2015). Existence Results for Fractional Neutral Functional Differential Equations with Random Impulses. Mathematics, 3(1), 16-28. https://doi.org/10.3390/math3010016