Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Abstract
:1. Introduction
2. High-Order Krylov IIF Methods for Fourth-Order Equations
2.1. Spatial Discretization
2.2. Krylov IIF Temporal Discretization
2.2.1. IIF Schemes
2.2.2. Krylov IIF Schemes
2.3. Linear Error Analysis
3. Numerical Experiments
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gottlieb, S.; Shu, C.-W. Total variation diminishing Runge-Kutta schemes. Math. Comput. 1998, 67, 73–85. [Google Scholar] [CrossRef]
- Gottlieb, S.; Shu, C.-W.; Tadmor, E. Strong stability preserving high order time discretization methods. SIAM Rev. 2001, 43, 89–112. [Google Scholar] [CrossRef]
- Shu, C.-W. TVD time discretizations. SIAM J. Sci. Stat. Comput. 1988, 9, 1073–1084. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Bourlioux, A.; Layton, A.T.; Minion, M.L. High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 2003, 189, 651–675. [Google Scholar] [CrossRef]
- Dutt, A.; Greengard, L.; Rokhlin, V. Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 2000, 40, 241–266. [Google Scholar] [CrossRef]
- Huang, J.; Jia, J.; Minion, M. Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 2007, 221, 739–760. [Google Scholar] [CrossRef]
- Layton, A.T.; Minion, M.L. Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 2004, 194, 697–715. [Google Scholar] [CrossRef]
- Minion, M.L. Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 2003, 1, 471–500. [Google Scholar] [CrossRef]
- Ascher, U.; Ruuth, S.; Wetton, B. Implicit-explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 1995, 32, 797–823. [Google Scholar]
- Kanevsky, A.; Carpenter, M.H.; Gottlieb, D.; Hesthaven, J.S. Application of implicit-explicit high order Runge-Kutta methods to Discontinuous-Galerkin schemes. J. Comput. Phys. 2007, 225, 1753–1781. [Google Scholar] [CrossRef]
- Kennedy, C.A.; Carpenter, M.H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 2003, 44, 139–181. [Google Scholar] [CrossRef]
- Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W. RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys. 2004, 201, 61–79. [Google Scholar] [CrossRef]
- Zhong, X. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 1996, 128, 19–31. [Google Scholar] [CrossRef]
- Christlieb, A.; Ong, B.; Qiu, J.-M. Integral deferred correction methods constructed with high order Runge-Kutta integrators. Math. Comput. 2010, 79, 761–783. [Google Scholar] [CrossRef]
- Beylkin, G.; Keiser, J.M.; Vozovoi, L. A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 1998, 147, 362–387. [Google Scholar] [CrossRef]
- Cox, S.M.; Matthews, P.C. Exponential time differencing for stiff systems. J. Comput. Phys. 2002, 176, 430–455. [Google Scholar]
- Kassam, A.-K.; Trefethen, L.N. Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 2005, 26, 1214–1233. [Google Scholar]
- Maday, Y.; Patera, A.T.; Ronquist, E.M. An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow. J. Sci. Comput. 1990, 5, 263–292. [Google Scholar] [CrossRef]
- Nie, Q.; Zhang, Y.-T.; Zhao, R. Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 2006, 214, 521–537. [Google Scholar] [CrossRef]
- Nie, Q.; Wan, F.; Zhang, Y.-T.; Liu, X.-F. Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 2008, 227, 5238–5255. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Nie, Q. Compact integration factor methods for complex domains and adaptive mesh refinement. J. Comput. Phys. 2010, 229, 5692–5706. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, L.; Nie, Q. Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 2014, 258, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, W.; Nie, Q. Semi-implicit integration factor methods on sparse grids for high-dimensional systems. J. Comput. Phys. 2015, 292, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Liu, X.; Leng, W. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discret. Contin. Dyn. Syst.-Ser. B 2014, 19, 1667–1687. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.-T. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods. J. Comput. Phys. 2011, 230, 4336–4352. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, Y.-T. Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems. J. Sci. Comput. 2017, 73, 980–1027. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, Y.-T. Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations. J. Sci. Comput. 2016, 69, 736–763. [Google Scholar] [CrossRef]
- Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer: Berlin, Germany, 2003. [Google Scholar]
- Lushnikov, P.; Chen, N.; Alber, M.S. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 2008, 78. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ovadia, J.; Liu, X.; Zhang, Y.-T.; Nie, Q. Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 2011, 230, 5996–6009. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhang, Y.-T. Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. J. Comput. Phys. 2013, 253, 368–388. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.-T. Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations. J. Comput. Phys. 2016, 311, 22–44. [Google Scholar]
- Chou, C.-S.; Zhang, Y.-T.; Zhao, R.; Nie, Q. Numerical methods for stiff reaction-diffusion systems. Discret. Contin. Dyn. Syst.-Ser. B 2007, 7, 515–525. [Google Scholar] [CrossRef]
- Shu, C.-W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., Eds.; Springer: Berlin, Germany, 1998. [Google Scholar]
- Jiang, G.-S.; Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Gallopoulos, E.; Saad, Y. Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 1992, 13, 1236–1264. [Google Scholar] [CrossRef]
- Moler, C.; Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 2003, 45, 3–49. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Bau, D. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Hochbruck, M.; Lubich, C. On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 1997, 34, 1911–1925. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.; Shu, C.-W. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 2007, 227, 472–491. [Google Scholar] [CrossRef]
- Xu, Y.; Shu, C.-W. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 2006, 195, 3430–3447. [Google Scholar] [CrossRef]
- Hyman, J.M.; Nicolaenko, B. The Kuramoto-Sivashinsky equation: A bridge between PDEs and dynamical systems. Phys. D Nonlinear Phenom. 1986, 18, 113–126. [Google Scholar] [CrossRef]
IIF2 Scheme | ||||
Error | Order | Error | Order | |
20 | 4.20 × 10 | — | 2.62 × 10 | — |
40 | 1.34 × 10 | 1.65 | 8.15 × 10 | 1.68 |
80 | 3.63 × 10 | 1.88 | 2.22 × 10 | 1.87 |
160 | 9.45 × 10 | 1.94 | 5.79 × 10 | 1.94 |
320 | 2.41 × 10 | 1.97 | 1.48 × 10 | 1.97 |
IIF3 Scheme | ||||
Error | Order | Error | Order | |
20 | 2.94 × 10 | — | 1.89 × 10 | — |
40 | 2.48 × 10 | 3.56 | 1.56 × 10 | 3.60 |
80 | 1.72 × 10 | 3.85 | 1.09 × 10 | 3.84 |
160 | 1.12 × 10 | 3.94 | 7.12 × 10 | 3.93 |
320 | 7.97 × 10 | 3.82 | 4.27 × 10 | 4.06 |
IIF3 Scheme | ||||
Error | Order | Error | Order | |
40 | 5.03 × 10 | — | 5.55 × 10 | — |
80 | 2.43 × 10 | 1.05 | 2.07 × 10 | 1.42 |
160 | 5.57 × 10 | 2.12 | 4.53 × 10 | 2.19 |
320 | 8.12 × 10 | 2.78 | 6.49 × 10 | 2.80 |
640 | 7.44 × 10 | 3.45 | 6.11 × 10 | 3.41 |
Krylov IIF3 Scheme | ||||
Error | Order | Error | Order | |
40 | 5.03 × 10 | — | 5.55 × 10 | — |
80 | 2.43 × 10 | 1.05 | 2.07 × 10 | 1.42 |
160 | 5.57 × 10 | 2.12 | 4.53 × 10 | 2.19 |
320 | 8.12 × 10 | 2.78 | 6.49 × 10 | 2.80 |
640 | 7.61 × 10 | 3.42 | 7.15 × 10 | 3.18 |
Krylov IIF2 Scheme | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
1.03 × 10 | — | 4.25 × 10 | — | 0.77 | |
2.44 × 10 | 2.08 | 9.88 × 10 | 2.10 | 1.44 | |
6.02 × 10 | 2.02 | 2.44 × 10 | 2.02 | 3.92 | |
1.50 × 10 | 2.00 | 6.08 × 10 | 2.00 | 22.73 | |
Krylov IIF3 Scheme | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
1.17 × 10 | — | 4.80 × 10 | — | 1.09 | |
7.66 × 10 | 3.93 | 3.10 × 10 | 3.95 | 2.66 | |
5.00 × 10 | 3.94 | 2.03 × 10 | 3.93 | 9.80 | |
3.36 × 10 | 3.90 | 1.36 × 10 | 3.90 | 47.11 |
Krylov IIF2, | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
5.18 × 10 | — | 3.29 × 10 | — | 0.67 | |
1.32 × 10 | 1.97 | 8.41 × 10 | 1.97 | 1.28 | |
3.34 × 10 | 1.99 | 2.12 × 10 | 1.99 | 4.59 | |
8.38 × 10 | 1.99 | 5.34 × 10 | 1.99 | 21.30 | |
Krylov IIF3, | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
2.94 × 10 | — | 1.86 × 10 | — | 0.56 | |
2.11 × 10 | 3.80 | 1.34 × 10 | 3.79 | 1.80 | |
1.94 × 10 | 3.45 | 1.23 × 10 | 3.44 | 8.14 | |
2.54 × 10 | 2.93 | 1.62 × 10 | 2.93 | 36.81 |
Krylov IIF2 Scheme, | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
7.85 × 10 | — | 5.08 × 10 | — | 0.36 | |
2.08 × 10 | 1.92 | 1.31 × 10 | 1.95 | 0.72 | |
5.35 × 10 | 1.96 | 3.40 × 10 | 1.95 | 3.61 | |
1.35 × 10 | 1.98 | 8.62 × 10 | 1.98 | 33.09 | |
3.41 × 10 | 1.99 | 2.17 × 10 | 1.99 | 482.11 | |
Krylov IIF3 Scheme, | |||||
Error | Order | Error | Order | CPU Time (Seconds) | |
4.36 × 10 | — | 2.82 × 10 | — | 1.02 | |
2.91 × 10 | 3.91 | 1.84 × 10 | 3.94 | 6.38 | |
1.82 × 10 | 4.00 | 1.15 × 10 | 3.99 | 37.63 | |
1.18 × 10 | 3.94 | 7.52 × 10 | 3.94 | 416.41 | |
9.20 × 10 | 3.68 | 5.86 × 10 | 3.68 | 6384.67 |
Krylov IIF2 Scheme, | ||||||
M | Error | Order | Error | Order | CPU Time (Seconds) | |
60 | 1.75 × 10 | — | 9.36 × 10 | — | 2.70 | |
60 | 6.89 × 10 | 1.34 | 3.57 × 10 | 1.39 | 63.72 | |
60 | 2.05 × 10 | 1.75 | 1.06 × 10 | 1.76 | 860.14 | |
60 | 5.40 × 10 | 1.93 | 2.79 × 10 | 1.92 | 28436.98 | |
Krylov IIF3 Scheme, | ||||||
M | Error | Order | Error | Order | CPU Time (Seconds) | |
90 | 1.30 × 10 | — | 7.09 × 10 | — | 11.67 | |
90 | 1.68 × 10 | 2.94 | 8.71 × 10 | 3.03 | 445.30 | |
90 | 1.70 × 10 | 3.31 | 7.98 × 10 | 3.45 | 7713.33 | |
90 | 1.80 × 10 | 3.24 | 7.77 × 10 | 3.36 | 149777.39 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machen, M.; Zhang, Y.-T. Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations. Mathematics 2017, 5, 63. https://doi.org/10.3390/math5040063
Machen M, Zhang Y-T. Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations. Mathematics. 2017; 5(4):63. https://doi.org/10.3390/math5040063
Chicago/Turabian StyleMachen, Michael, and Yong-Tao Zhang. 2017. "Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations" Mathematics 5, no. 4: 63. https://doi.org/10.3390/math5040063
APA StyleMachen, M., & Zhang, Y. -T. (2017). Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations. Mathematics, 5(4), 63. https://doi.org/10.3390/math5040063