The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations
Abstract
:1. Introduction
1.1. Background
1.2. Formulation of the Problem of Interest for This Investigation
1.3. Literature Survey
1.4. Scope and Contribution of This Study
1.5. Organization of the Paper
2. Description of Numerical Model
2.1. The Nonlinear Euler System
2.2. Overview of the Fifth Order Finite Volume WENO Schemes
2.3. The Lax–Wendroff-Type Time Discretization Procedure for Euler Equations
3. Numerical Results
4. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Guo, M.; Zhang, Y.; Wang, M.; Chen, Y.D.; Yang, H.W. A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism. Comput. Math. Appl. 2018, 75, 3589–3603. [Google Scholar] [CrossRef]
- Lu, C.N.; Fu, C.; Yang, H.W. Time-fractional generalized Boussinesq Equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 2018, 327, 104–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.H.; Zhang, X.E.; Yang, H.W. Rational solutions and lump solutions to the generalized (3 + 1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 2017, 73, 246–252. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, Q.L.; Li, Y.X. Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem. J. Nonlinear Sci. Appl. 2015, 8, 496–506. [Google Scholar] [CrossRef]
- Barnett, M.P.; Capitani, J.F.; Joachim, V.Z. Symbolic calculation in chemistry: Selected examples. Int. J. Quantum Chem. 2004, 100, 80–104. [Google Scholar] [CrossRef]
- Yang, H.W.; Chen, X.; Guo, M.; Chen, Y.D. A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property. Nonlinear Dyn. 2018, 91, 2019–2032. [Google Scholar] [CrossRef]
- Yang, H.W.; Xu, Z.H.; Yang, D.Z. ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect. Adv. Differ. Equ. 2016, 2016, 167. [Google Scholar] [CrossRef]
- Saleh, M.F.; Chang, W.; Travers, J.C. Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers. Phys. Rev. Lett. 2012, 109, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gorza, S.P.; Deconinck, B.; Emplit, P. Experimental demonstration of the oscillatory snake instability of the bright soliton of the (2 + 1)D hyperbolic nonlinear Schrödinger equation. Phys. Rev. Lett. 2011, 106, 094101. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yin, B.; Yang, H. Dissipative nonlinear Schrödinger equation for envelope solitary Rossby waves with dissipation effect in stratified fluids and its solution. Abstr. Appl. Anal. 2014, 2014, 643652. [Google Scholar] [CrossRef]
- Guo, M.; Fu, C.; Zhang, Y.; Liu, J.X.; Yang, H.W. Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional Schamel-KdV equation. Complexity 2018, 2018, 6852548. [Google Scholar] [CrossRef]
- Yang, H.W.; Yin, B.; Wang, Q. Forced ILW-Burgers Equation As A Model For Rossby Solitary Waves Generated By Topography In Finite Depth Fluids. J. Appl. Math. 2012, 2012, 491343. [Google Scholar] [CrossRef]
- Bekir, A. Painlevé test for some (2 + 1)-dimensional nonlinear equations. Chaos Solitons Fractals 2007, 32, 449–455. [Google Scholar] [CrossRef]
- Xu, X.X.; Sun, Y.P. An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 2017, 10, 3328–3343. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, Y.Q.; Zhao, Q.L. Positive and negative integrable hierarchies, associated conservation laws and darboux transformation. J. Comput. Appl. Math. 2009, 233, 1096–1107. [Google Scholar] [CrossRef]
- Guo, X.R. On bilinear representations and infinite conservation laws of a nonlinear variable-coefficient equation. Appl. Math. Comput. 2014, 248, 531–535. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via hirota bilinear forms. J. Differ. Equ. 2018, 264, 2639–2659. [Google Scholar] [CrossRef]
- Dong, H.H.; Chen, T.; Chen, L.; Zhang, Y. A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations. J. Nonlinear Sci. Appl. 2016, 9, 5107–5118. [Google Scholar] [CrossRef]
- Fu, C.; Lu, C.N.; Yang, H.W. Time-space fractional (2 + 1) dimensional nonlinear Schrédinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. Adv. Differ. Equ. 2018, 2018, 56. [Google Scholar] [CrossRef]
- Tang, J.; He, G.P.; Fang, L. A new non-interior continuation method for second-order cone programming. J. Numer. Math. 2013, 21, 301–323. [Google Scholar] [CrossRef]
- Wang, Z. A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013, 2013, 256071. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Meng, X.Z.; Zhang, T.H. Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal. Hybrid Syst. 2017, 26, 19–37. [Google Scholar] [CrossRef]
- Liu, X.K.; Li, Y.; Zhang, W.H. Stochastic linear quadratic optimal control with constraint for discrete-time systems. Appl. Math. Comput. 2014, 228, 264–270. [Google Scholar] [CrossRef]
- Zhou, S.W.; Zhang, W.H. Discrete-time indefinite stochastic Lq control via sdp and Lmi methods. J. Appl. Math. 2012, 2012, 638762. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Jiang, G.S.; Shu, C.W. Effecient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Balsara, D.S.; Shu, C.W. Monotonicity preserving weithted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 2000, 160, 405–452. [Google Scholar] [CrossRef]
- Shu, C.W. Essential non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Springer: Berlin, Gemany, 1998; pp. 325–432. [Google Scholar]
- Wang, Z.; Huang, X.; Zhou, J.P. A numerical method for delayed fractional-order differential equations: Based on G-L definition. Appl. Math. Inf. Sci. 2013, 7, 525–529. [Google Scholar] [CrossRef]
- Harten, A.; Engguist, B.; Osher, S.; Chakravarthy, S. Uniformly high order essentially non-oscillatory schemes. J. Comput. Phys. 1987, 71, 231–303. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J.X. Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes. Comput. Math. Appl. 2014, 68, 1137–1150. [Google Scholar] [CrossRef]
- Li, G.; Qiu, J.X. Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 2010, 229, 8105–8129. [Google Scholar] [CrossRef]
- Christlieb, A.J.; Liu, Y.; Tang, Q.; Xu, Z.F. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 2015, 281, 334–351. [Google Scholar] [CrossRef]
- Dumbser, M. Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 2014, 280, 57–83. [Google Scholar] [CrossRef]
- Huang, C.S.; Arbogast, T.; Hung, C.H. A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws. J. Comput. Phys. 2014, 262, 291–312. [Google Scholar] [CrossRef]
- Arándiga, F.; Belda, A.M.; Mulet, P. Point-Value WENO Multiresolution Applications to Stable Image Compression. J. Sci. Comput. 2009, 43, 158–182. [Google Scholar] [CrossRef]
- Balsara, D.S. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 2009, 228, 5040–5054. [Google Scholar] [CrossRef]
- Vukovic, S.; Sopta, L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 2002, 179, 593–621. [Google Scholar] [CrossRef]
- Zhao, S.; Lardjane, N.; Fedioun, I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Comput. Fluid 2014, 99, 74–87. [Google Scholar] [CrossRef]
- Vecil, F.; Mestre, P.M.; Labrunie, S. WENO schemes applied to the quasi-relativistic Vlasov-Maxwell model for laser-plasma interaction. C. R. Mecanique 2014, 342, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Qiu, J.; Qiu, J.M. An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the guiding center vlasov model. J. Sci. Comput. 2017, 73, 1316–1337. [Google Scholar] [CrossRef]
- Lu, C.N.; Qiu, J.X.; Wang, R.Y. Weighted Essential Non-oscillatory Schemes for Tidal Bore on Unstructured Meshes. Int. J. Numer. Method Fluid 2009, 59, 611–630. [Google Scholar] [CrossRef]
- Qiu, J.X.; Shu, C.W. Finite difference WENO schemes with Lax-wendroff-type time discretizations. SIAM J. Sci. Comput. 2003, 24, 2185–2198. [Google Scholar] [CrossRef]
- Lax, P.D.; Wendroff, B. Systems of conservation law. Commun. Pure Appl. Math. 1960, 13, 217–237. [Google Scholar] [CrossRef]
- Lu, C.N.; Qiu, J.X. Simulation of shallow water equations with finite difference Lax–Wendroff weighted essential non-oscillatory schemes. J. Sci. Comput. 2011, 47, 281–302. [Google Scholar] [CrossRef]
- Lu, C.N.; Qiu, J.X.; Wang, R.Y. A numerical study for the performance of the WENO schemes based on different numerical fluxes for the shallow water equations. J. Comput. Math. 2010, 28, 807–825. [Google Scholar] [CrossRef]
- Lu, C.N.; Xie, L.Y.; Yang, H.W. The Simple Finite Volume Lax-Wendroff Weighted Essentially Nonoscillatory Schemes for Shallow Water Equations with Bottom Topography. Math. Probl. Eng. 2018, 2018, 2652367. [Google Scholar] [CrossRef]
N | WENO5-LW3 | WENO5-RK3 | |||||||
---|---|---|---|---|---|---|---|---|---|
error | order | error | order | error | order | error | order | ||
10 | 6.38 × | 1.02 × | 6.37 × | 1.01 × | |||||
20 | 3.14 × | 4.34 | 5.45 × | 4.23 | 3.15 × | 4.34 | 5.45 × | 4.21 | |
40 | 9.80 × | 5.00 | 1.88 × | 4.86 | 9.85 × | 5.00 | 1.89 × | 4.85 | |
80 | 3.06 × | 5.00 | 6.14 × | 4.94 | 3.07 × | 5.00 | 6.15 × | 4.94 | |
160 | 9.59 × | 5.00 | 1.85 × | 5.05 | 9.58 × | 5.00 | 1.85 × | 5.05 | |
320 | 2.97 × | 5.01 | 5.40 × | 5.10 | 2.98 × | 5.01 | 5.42 × | 5.10 | |
640 | 9.71 × | 4.93 | 1.82 × | 4.89 | 9.20 × | 5.02 | 1.91 × | 4.82 |
N | WENO5-LW3 | WENO5-RK3 | |||||||
---|---|---|---|---|---|---|---|---|---|
error | order | error | order | error | order | error | order | ||
4.46× | 0.00 | 1.73× | 0.00 | 4.46× | 0.00 | 1.74× | 0.00 | ||
2.70× | 4.05 | 1.15× | 3.91 | 2.72× | 4.03 | 1.16× | 3.90 | ||
8.79× | 4.94 | 4.32× | 4.73 | 8.85× | 4.94 | 4.35× | 4.74 | ||
2.75× | 5.00 | 1.38× | 4.97 | 2.77× | 5.00 | 1.40× | 4.96 | ||
8.62× | 5.00 | 4.24× | 5.02 | 8.65× | 5.00 | 4.27× | 5.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Lu, C.; Yang, H. The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations. Mathematics 2018, 6, 211. https://doi.org/10.3390/math6100211
Dong H, Lu C, Yang H. The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations. Mathematics. 2018; 6(10):211. https://doi.org/10.3390/math6100211
Chicago/Turabian StyleDong, Haoyu, Changna Lu, and Hongwei Yang. 2018. "The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations" Mathematics 6, no. 10: 211. https://doi.org/10.3390/math6100211
APA StyleDong, H., Lu, C., & Yang, H. (2018). The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations. Mathematics, 6(10), 211. https://doi.org/10.3390/math6100211