Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network
Abstract
:1. Introduction
2. Preliminaries
2.1. Electrical Flow Basics and Notation
2.2. An Exemplary Electrical Network
3. Derivations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohar, B.; Alavi, Y.; Chartrand, G.; Oellermann, O. The Laplacian spectrum of graphs. Graph Theory Comb. Appl. 1991, 2, 12. [Google Scholar]
- Rubido, N.; Grebogi, C.; Baptista, M.S. Structure and function in flow networks. EPL (Europhys. Lett.) 2013, 101, 68001. [Google Scholar] [CrossRef] [Green Version]
- Rubido, N.; Grebogi, C.; Baptista, M.S. General analytical solutions for DC/AC circuit-network analysis. Eur. Phys. J. Spec. Top. 2017, 226, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.R.; Graham, F.C. Spectral Graph Theory; Number 92; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Edström, F. On eigenvalues to the Y-bus matrix. Int. J. Electr. Power Energy Syst. 2014, 56, 147–150. [Google Scholar] [CrossRef]
- Edström, F.; Söder, L. On spectral graph theory in power system restoration. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), Manchester, UK, 5–7 December 2011; pp. 1–8. [Google Scholar]
- Pagani, G.A.; Aiello, M. The power grid as a complex network: A survey. Phys. A Stat. Mech. Its Appl. 2013, 392, 2688–2700. [Google Scholar] [CrossRef]
- Sun, K. Complex networks theory: A new method of research in power grid. In Proceedings of the 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, 18 August 2005; pp. 1–6. [Google Scholar]
- Hines, P.; Cotilla-Sanchez, E.; Blumsack, S. Do topological models provide good information about electricity infrastructure vulnerability? Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 033122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, T.; Ellens, W.; Kooij, R.E. Context-independent centrality measures underestimate the vulnerability of power grids. arXiv, 2013; arXiv:1304.5402. [Google Scholar]
- Cuffe, P. A comparison of malicious interdiction strategies against electrical networks. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 205–217. [Google Scholar] [CrossRef]
- Coffrin, D.; Gordon, D.; Scott, P. Nesta the nicta energy system test case archive. arXiv, 2014; arXiv:1411.0359. [Google Scholar]
- Cuffe, P.; Keane, A. Visualizing the electrical structure of power systems. IEEE Syst. J. 2017, 11, 1810–1821. [Google Scholar] [CrossRef]
- Dassios, I.K.; Cuffe, P.; Keane, A. Visualizing voltage relationships using the unity row summation and real valued properties of the FLG matrix. Electr. Power Syst. Res. 2016, 140, 611–618. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dassios, I.; Keane, A.; Cuffe, P. Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network. Mathematics 2019, 7, 106. https://doi.org/10.3390/math7010106
Dassios I, Keane A, Cuffe P. Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network. Mathematics. 2019; 7(1):106. https://doi.org/10.3390/math7010106
Chicago/Turabian StyleDassios, Ioannis, Andrew Keane, and Paul Cuffe. 2019. "Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network" Mathematics 7, no. 1: 106. https://doi.org/10.3390/math7010106
APA StyleDassios, I., Keane, A., & Cuffe, P. (2019). Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network. Mathematics, 7(1), 106. https://doi.org/10.3390/math7010106