A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties
Abstract
:1. Introduction
2. An Extension of the -Gauss Hypergeometric Function
3. Integral Representations and Derivative Formulas
4. Application of the Mellin Transform
5. Use of the Operators of Fractional Calculus
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arshad, M.; Mubeen, S.; Nisar, K.S.; Rahman, G. Extended Wright-Bessel function and its properties. Commun. Korean Math. Soc. 2018, 3, 143–155. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall (CRC Press Company): Boca Raton, NJ, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar] [CrossRef]
- Mubeen, S.; Rahman, G.; Nisar, K.S.; Choi, J.; Arshad, M. An extended beta function and its properties. Far East J. Math. Sci. 2017, 102, 1545–1557. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Yilmaz, B. The extended Mittag-Leffler function and its properties. J. Inequal. Appl. 2014, 2014, 85. [Google Scholar] [CrossRef] [Green Version]
- Özergin, E.; Özarslan, M.A.; Altın, A. Extension of gamma, beta and hypergeometric functions. J. Comput. Appl. Math. 2011, 235, 4601–4610. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chaudhry, M.A.; Agarwal, R.P. The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integral Transforms Spec. Funct. 2012, 23, 659–683. [Google Scholar] [CrossRef]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kıymaz, İ.O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Rahman, G.; Nisar, K.S. Some Extensions of the Pochhammer Symbol and the Associated Hypergeometric Functions. Iran. J. Sci. Tech. Trans. A Sci. 2019, 43, 2601–2606. [Google Scholar] [CrossRef]
- Virchenko, N. On some generalizations of the functions of hypergeometric type. Fract. Calc. Appl. Anal. 1999, 2, 233–244. [Google Scholar]
- Galué, L.; Al-Zamel, A.; Kalla, S.L. Further results on generalized hypergeometric functions. Appl. Math. Comput. 2013, 136, 17–25. [Google Scholar] [CrossRef]
- Virchenko, N.; Kalla, S.L.; Al-Zamel, A. Some results on a generalized hypergeometric function. Integral Transforms Spec. Funct. 2001, 12, 89–100. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Parmar, R.K. Extended τ-hypergeometric functions and associated properties. C. R. Math. Acad. Sci. Paris Sér. I 2015, 353, 421–426. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications; (“Nauka i Tekhnika”, Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Khan, I. A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties. Mathematics 2019, 7, 996. https://doi.org/10.3390/math7100996
Srivastava HM, Tassaddiq A, Rahman G, Nisar KS, Khan I. A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties. Mathematics. 2019; 7(10):996. https://doi.org/10.3390/math7100996
Chicago/Turabian StyleSrivastava, Hari Mohan, Asifa Tassaddiq, Gauhar Rahman, Kottakkaran Sooppy Nisar, and Ilyas Khan. 2019. "A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties" Mathematics 7, no. 10: 996. https://doi.org/10.3390/math7100996
APA StyleSrivastava, H. M., Tassaddiq, A., Rahman, G., Nisar, K. S., & Khan, I. (2019). A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties. Mathematics, 7(10), 996. https://doi.org/10.3390/math7100996