Some Applications of a New Integral Operator in q-Analog for Multivalent Functions
Abstract
:1. Introduction
2. The Main Results and Their Consequences
3. Applications
4. Concluding Remarks and Observations
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinburgh. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Raza, M.; U-Din, M. Close-to-convexity of q-Mittag-Leffler Functions, C. R. de l’Acad. Bulg. des Sci. 2018, 71, 1581–1591. [Google Scholar]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-analogue of differential subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Raza, M.; Javed, K.; Hussain, S.; Arif, M. Class of analytic functions defined by q-integral operator in a symmetric region. Symmetry 2019, 11, 1042. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Mahmmod, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Ahmad, K.; Arif, M.; Liu, J.-L. Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator. Turkish J. Math. 2019, 43, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Matematički Vesnik 2013, 65, 454–465. [Google Scholar]
- Arif, M.; Ahmad, B. New subfamily of meromorphic starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Arif, M.; Dziok, J.; Raza, M.; Sokół, J. On products of multivalent close-to-star functions. J. Inequal. Appl. 2015, 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Haq, M.; Liu, J.-L. A subfamily of univalent functions associated with q-analogue of Noor integral operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-L.; Inayat Noor, K. Some properties of Noor integral operator. J. Nat. Geom. 2002, 21, 81–90. [Google Scholar]
- Noor, K.I. On new classes of integral operators. J. Natur. Geom. 1999, 16, 71–80. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Aldawish, I.; Darus, M. Starlikness of q-differential operator involving quantum calculus. Korean J. Math. 2014, 22, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar] [CrossRef] [Green Version]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Murugusundaramoorthy, G.; Sokoł, J. On certain class of meromorphic functions with positive coefcients. Acta Math. Sci. 2012, 32, 1–16. [Google Scholar]
- Huda, A.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Studia Univ. Babes-Bolyai Ser. Math. 2013, 58, 529–537. [Google Scholar]
- Pommerenke, C. On meromorphic starlike functions. Pacific J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Somanatha, C. Certain diferential operators for meromorphic functions. Houston J. Math. 1991, 17, 279–284. [Google Scholar]
- Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of spiral-like close-to-convex functions associated with conic domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral operators associated with conic regions. J. Inequal. Appl. 2019, 2019, 59. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Rafiullah, M.; Arif, M. Some subclasses of close-to-convex mappings associated with conic regions. Appl. Math. Comput. 2016, 285, 94–102. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science+Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Berlin, Germany, 2012. [Google Scholar]
- Ernst, T. The History of q-Calculus and a New Method; U.U.D.M. Report 2000; Department of Mathematics, Upsala University, Springer: Berlin, Germany, 2000; Volume 16. [Google Scholar]
- Srivastava, G. Gauging ecliptic sentiment. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4 July 2018; pp. 1–5. [Google Scholar]
- Sene, N.; Srivastava, G. Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations. Symmetry 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric Properties of Certain Classes of Analytic Functions Associated with a q-Integral Operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.u. Some Applications of a New Integral Operator in q-Analog for Multivalent Functions. Mathematics 2019, 7, 1178. https://doi.org/10.3390/math7121178
Khan Q, Arif M, Raza M, Srivastava G, Tang H, Rehman Su. Some Applications of a New Integral Operator in q-Analog for Multivalent Functions. Mathematics. 2019; 7(12):1178. https://doi.org/10.3390/math7121178
Chicago/Turabian StyleKhan, Qaiser, Muhammad Arif, Mohsan Raza, Gautam Srivastava, Huo Tang, and Shafiq ur Rehman. 2019. "Some Applications of a New Integral Operator in q-Analog for Multivalent Functions" Mathematics 7, no. 12: 1178. https://doi.org/10.3390/math7121178
APA StyleKhan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., & Rehman, S. u. (2019). Some Applications of a New Integral Operator in q-Analog for Multivalent Functions. Mathematics, 7(12), 1178. https://doi.org/10.3390/math7121178