Integral Involving Bessel Functions Arising in Propagation Phenomena
Abstract
:1. Introduction
2. Statement and Proof of Theorem
3. Quantum Gravity?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Dover: New York, NY, USA, 1974. [Google Scholar]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series and Products; Elsevier: Burlington, MA, USA, 2007. [Google Scholar]
- Watson, G. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, MA, USA, 1952. [Google Scholar]
- Bandos, T.; Montero, A.; Fernández, E.; González-Santander, J.L.; Isidro, J.M.; Pérez, J.; de Córdoba, P.F.; Urchueguía, J. Finite Line-Source Model for Borehole Heat Exchangers: Effect of Vertical Temperature Variations. Geothermics 2009, 38, 263. [Google Scholar] [CrossRef]
- González-Santander, J.L.; Casta neda-Porras, P.; Ratis, Y.L.; Isidro, J.M.; de Córdoba, P.F. Calculation of Some Integrals Arising in Heat Transfer in Grinding. Math. Prob. Eng. 2010, 2010, 535801. [Google Scholar]
- González-Santander, J.L.; Placeres, J.M.V.; Isidro, J.M. Exact Solution for the Time-Dependent Temperature Field in Dry Grinding: Application to Segmental Wheels. Math. Prob. Eng. 2011, 2011, 927876. [Google Scholar] [CrossRef]
- Skuratov, D.; Ratis, Y.L.; Selezneva, I.; Pérez, J.; de Córdoba, P.F.; Urchueguía, J. Mathematical Modelling and Analytical Solution for Workpiece Temperature in Grinding. Appl. Math. Model. 2007, 31, 1039. [Google Scholar] [CrossRef]
- Carslaw, H.; Jaeger, J. Conduction of Heat in Solids; Oxford University Press: Oxford, UK, 1959. [Google Scholar]
- Bogoliubov, N.; Shirkov, D. Introduction to the Theory of Quantized Fields; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Padmanabhan, T. Duality and Zero-Point Length of Spacetime. Phys. Rev. Lett. 1997, 78, 1854. [Google Scholar] [CrossRef]
- Padmanabhan, T. Hypothesis of Path Integral Duality. I. Quantum Gravitational Corrections to the Propagator. Phys. Rev. 1998, D57, 6206. [Google Scholar] [CrossRef]
- Finster, F.; Isidro, J.M.; Universidad Politécnica de Valencia, Valencia, Spain. Unpublished work, 2019.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratis, Y.L.; Fernández de Córdoba, P.; Isidro, J.M.; Jaime, R. Integral Involving Bessel Functions Arising in Propagation Phenomena. Mathematics 2019, 7, 434. https://doi.org/10.3390/math7050434
Ratis YL, Fernández de Córdoba P, Isidro JM, Jaime R. Integral Involving Bessel Functions Arising in Propagation Phenomena. Mathematics. 2019; 7(5):434. https://doi.org/10.3390/math7050434
Chicago/Turabian StyleRatis, Yu. L., P. Fernández de Córdoba, J. M. Isidro, and R. Jaime. 2019. "Integral Involving Bessel Functions Arising in Propagation Phenomena" Mathematics 7, no. 5: 434. https://doi.org/10.3390/math7050434
APA StyleRatis, Y. L., Fernández de Córdoba, P., Isidro, J. M., & Jaime, R. (2019). Integral Involving Bessel Functions Arising in Propagation Phenomena. Mathematics, 7(5), 434. https://doi.org/10.3390/math7050434