Existence Result and Uniqueness for Some Fractional Problem
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Put , then we have:
- (ii)
- Put , then we obtain:
3. Proof of the Main Results
- (i)
- P is normal, and T is compact continuous.
- (ii)
- P is regular, and T is continuous.
- (ii)
- E is reflexive, P normal, and T continuous or weak continuous.
4. Examples
Author Contributions
Funding
Conflicts of Interest
References
- Ben Ali, K.; Ghanmi, A.; Kefi, K. Existence of solutions for fractional differential equations with dirichlet boundary conditions. Electr. J. Differ. Equ. 2016, 2016, 1–11. [Google Scholar]
- Cabada, A.; Wang, G. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Gejji, V.D. Positive solutions of nonlinear fractional boundary value problems using adomian decomposition method. Appl. Math. Comput. 2006, 180, 700–706. [Google Scholar] [CrossRef]
- Liang, S.H.; Zhang, J.H. Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71, 5545–5550. [Google Scholar] [CrossRef]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Nieto, J.J. Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 2010, 23, 1248–1251. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Wei, Z.; Dong, W.; Che, J. Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative. Nonlinear Anal. 2010, 73, 3232–3238. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for nonlinear boundary value problems of fractional integro-differential equations with integral boundary conditions. Bound Value Probl. 2009, 2009, 708576. [Google Scholar]
- Bãleanu, D.; Octavian, G.M.; O’Regan, D. On a fractional differential equation with infinitely many solutions. Adv. Diff. Equ. 2012, 2012, 145. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72, 916–924. [Google Scholar] [CrossRef]
- Bai, Z.; Lü, H.S. Positive solutions of boundary value problems of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311, 495–505. [Google Scholar] [CrossRef]
- Ghanmi, A.; Kratou, M.; Saoudi, K. A Multiplicity Results for a Singular Problem Involving a Riemann–Liouville Fractional Derivative. FILOMAT 2018, 32, 653–669. [Google Scholar] [CrossRef]
- Saoudi, K.; Agarwal, P.; Kumam, P.; Ghanmi, A.; Thounthong, P. The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative. Adv. Diff. Equ. 2018, 2018, 263. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Existence Results for Nonlinear Boundary Value Problems. FILOMAT 2018, 32, 609–618. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S.; Vasundhara, J. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Wang, G.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X.; Bai, Z.; Hou, W. Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation. Appl. Math. Lett. 2019, 96, 131–137. [Google Scholar] [CrossRef]
- Pei, K.; Wang, G.; Sun, Y. Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain. Appl. Math. Comput. 2017, 312, 158–168. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, S.; Sun, S.; Yin, C. Monotone iterative method for a class of fractional differential equations. Electron. J. Differ. Equ. 2016, 2016, 1–8. [Google Scholar]
- Ding, Y.; Wei, Z.; Xu, J.; O’Regan, D. Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian. J. Comput. Appl. Math. 2015, 288, 151–158. [Google Scholar] [CrossRef]
- Wang, G. Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 2018, 76, 103–109. [Google Scholar] [CrossRef]
- Wang, G.; Sudsutad, W.; Zhang, L.; Tariboon, J. Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type. Adv. Differ. Equ. 2016, 211. [Google Scholar] [CrossRef]
- Hu, C.; Liu, B.; Xie, S. Monotone iterative solutions for nonlinear boundary value problems of fractional differential equation with deviating arguments. Appl. Math. Comput. 2013, 222, 72–81. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, J.; Szanto, I. Monotone iterative technique for Riemann–Liouville fractional integro- differential equations with advanced arguments. Results Math. 2013, 63, 1277–1287. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Lu, Y. The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 2013, 219, 4680–4691. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 2014, 37, 26–33. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G.; Agarwal, R.P. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249, 51–56. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G. Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line. Bull. Aust. Math. Soc. 2015, 91, 116–128. [Google Scholar] [CrossRef]
- Wang, G. Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 2015, 47, 1–7. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science BV: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Zhong, C.; Fan, X.; Chen, W. Nonlinear Functional Analysis and Its Application; Lan Zhou University Press: Lanzhou, China, 1998. [Google Scholar]
- Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, NY, USA, 1976; ISBN 978-0-07-054235-8. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Ghanmi, A.; Horrigue, S.; Madian, S. Existence Result and Uniqueness for Some Fractional Problem. Mathematics 2019, 7, 516. https://doi.org/10.3390/math7060516
Wang G, Ghanmi A, Horrigue S, Madian S. Existence Result and Uniqueness for Some Fractional Problem. Mathematics. 2019; 7(6):516. https://doi.org/10.3390/math7060516
Chicago/Turabian StyleWang, Guotao, Abdeljabbar Ghanmi, Samah Horrigue, and Samar Madian. 2019. "Existence Result and Uniqueness for Some Fractional Problem" Mathematics 7, no. 6: 516. https://doi.org/10.3390/math7060516
APA StyleWang, G., Ghanmi, A., Horrigue, S., & Madian, S. (2019). Existence Result and Uniqueness for Some Fractional Problem. Mathematics, 7(6), 516. https://doi.org/10.3390/math7060516