Next Article in Journal
Poincaré-Type Inequalities for Compact Degenerate Pure Jump Markov Processes
Next Article in Special Issue
A Solution for Volterra Fractional Integral Equations by Hybrid Contractions
Previous Article in Journal
Existence Result and Uniqueness for Some Fractional Problem
Previous Article in Special Issue
A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(6), 517; https://doi.org/10.3390/math7060517
Submission received: 28 April 2019 / Revised: 30 May 2019 / Accepted: 5 June 2019 / Published: 6 June 2019
(This article belongs to the Special Issue Applied Functional Analysis and Its Applications)

Abstract

:
In this paper, we are concerned with the ψ -fractional integrals, which is a generalization of the well-known Riemann–Liouville fractional integrals and the Hadamard fractional integrals, and are useful in the study of various fractional integral equations, fractional differential equations, and fractional integrodifferential equations. Our main goal is to present some new properties for ψ -fractional integrals involving a general function ψ by establishing several new equalities for the ψ -fractional integrals. We also give two applications of our new equalities.

1. Introduction

Fractional integrals and fractional derivatives are generalizations of classical integer-order integrals and integer-order derivatives, respectively, which have been found to be more adequate in the study of a lot of real world problems. In recent decades, various fractional-order models have been used in plasma physics, automatic control, robotics, and many other branches of science (cf., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] and the references therein).
It is known that the ψ -fractional derivative operator, which was introduced in [22], extends the well-known Riemann–Liouville fractional derivative operator. Moreover, it is also easy to see that the ψ -fractional integral operator [14] extends the well-known Riemann–Liouville fractional integral operator and the Hadamard fractional integral operator (see Remark 1 below). Both the ψ -fractional derivative operator and the ψ -fractional integral operator are useful in the study of various fractional integral equations, fractional differential equations, and fractional integrodifferential equations.
The following known definitions about fractional integrals are used later.
Definition 1.
[14] Let [ t 1 , t 2 ] R and α > 0 . The Riemann–Liouville fractional integrals (left-sided and right-sided) of order α are defined by
J t 1 + α f ( μ ) : = 1 Γ ( α ) t 1 μ f ( s ) ( μ s ) 1 α d s , μ > t 1
and
J t 2 α f ( μ ) : = 1 Γ ( α ) μ t 2 f ( s ) ( s μ ) 1 α d s , μ < t 2 ,
respectively, where
Γ ( t ) = 0 s t 1 e s d s ,
is the Euler’s gamma function.
Definition 2.
[23] Let [ t 1 , t 2 ] R and α > 0 . The Hadamard fractional integrals (left-sided and right-sided) of order α are defined by
H t 1 + α f ( μ ) : = 1 Γ ( α ) t 1 μ ln μ s α 1 f ( s ) s d s , μ > t 1
and
H t 2 α f ( μ ) : = 1 Γ ( α ) μ t 2 ln s μ α 1 f ( s ) s d s , μ < t 2 ,
respectively.
Definition 3.
[14] Let [ t 1 , t 2 ] R and α > 0 . Suppose that ψ ( μ ) > 0 is an increasing function on ( t 1 , t 2 ] , and ψ ( μ ) is continuous on ( t 1 , t 2 ) . The ψ-fractional integrals (left-sided and right-sided) of order α are defined by
I t 1 + α ; ψ f ( μ ) = 1 Γ ( α ) t 1 μ ψ ( s ) ( ψ ( μ ) ψ ( s ) ) α 1 f ( s ) d s , μ > t 1
and
I t 2 α ; ψ f ( μ ) = 1 Γ ( α ) μ t 2 ψ ( s ) ( ψ ( s ) ψ ( μ ) ) α 1 f ( s ) d s , μ < t 2 ,
respectively.
Remark 1.
(i) 
From [14], we know that, for a function f, the right-sided and left-sided Riemann–Liouville fractional integral of order α are defined by
J a + α f ( x ) : = 1 Γ ( α ) a x f ( t ) ( x t ) 1 α d t , x > a
and
J b α f ( x ) : = 1 Γ ( α ) x b f ( t ) ( t x ) 1 α d t , x < b ,
respectively. If we take ψ ( x ) = x , then it follows from (1) that
I a + α ; x f ( x ) = 1 Γ ( α ) a x ( x t ) α 1 f ( t ) d t = J a + α f ( x ) ,
which is the right-sided Riemann–Liouville fractional integral.
(ii) 
From [23], we know that, for a function f, the right-sided and left-sided Hadamard fractional integral of order α are defined by
H a + α f ( x ) : = 1 Γ ( α ) a x ln x t α 1 f ( t ) t d t , x > a
and
H b α f ( x ) : = 1 Γ ( α ) x b ln t x α 1 f ( t ) t d t , x < b ,
respectively. Hence, taking ψ ( x ) = ln x in (1), we have
I a + α ; ln x f ( x ) = 1 Γ ( α ) a x 1 t ( ln x ln t ) α 1 f ( t ) d t = 1 Γ ( α ) a x ln x t α 1 f ( t ) d t t = H a + α f ( x ) ,
which is the right-sided Hadamard fractional integral.
Throughout this paper, we suppose that ψ ( μ ) is a strictly increasing function on ( 0 , ) and ψ ( μ ) is continuous, 0 t 1 < t 2 . ζ ( μ ) is the inverse function of ψ ( μ ) and
ϕ ( μ ) : = f ( μ ) + f ( t 1 + t 2 μ ) .
The rest of the paper is organized as follows. In Section 2, we give some new equalities for ψ -fractional integrals involving a general function ψ . To illustrate the applicability of our new equalities, we give two examples in Section 3 by introducing the ψ -means and presenting relationships between the arithmetic mean and the ψ -means, and by establishing a prior estimate for a class of fractional differential equations in view of the equalities established in Section 2.

2. Equalities for ψ -Fractional Integrals

Theorem 1.
Let the function f : [ t 1 , t 2 ] R be differentiable. Then, for the ψ-fractional integrals in (1) and (2), we have
f ( t 1 ) + f ( t 2 ) 2 Γ ( α + 1 ) 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α [ I t 1 + α ; ψ f ( t 2 ) + I t 2 α ; ψ f ( t 1 ) ] = ψ ( t 2 ) ψ ( t 1 ) 2 0 1 [ ( 1 μ ) α μ α ] f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) · ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ .
Proof. 
Write
I = 0 1 [ ( 1 μ ) α μ α ] f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ = I 1 + I 2 ,
where
I 1 = 0 1 ( 1 μ ) α f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ ,
I 2 = 0 1 μ α f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ .
Then, for I 1 , we have
I 1 = 0 1 ( 1 μ ) α f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ = ( 1 μ ) α f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) ψ ( t 1 ) ψ ( t 2 ) | 0 1 α ψ ( t 2 ) ψ ( t 1 ) 0 1 ( 1 μ ) α 1 f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) d μ = f ( t 2 ) ψ ( t 2 ) ψ ( t 1 ) α ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 t 1 t 2 ( ψ ( μ ) ψ ( t 1 ) ) α 1 f ( μ ) ψ ( μ ) d μ = f ( t 2 ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 I t 2 α ; ψ f ( t 1 ) .
For I 2 , we obtain
I 2 = 0 1 μ α f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ = μ α f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) ψ ( t 2 ) ψ ( t 1 ) | 0 1 α ψ ( t 2 ) ψ ( t 1 ) 0 1 μ α 1 f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) d μ = f ( t 1 ) ψ ( t 2 ) ψ ( t 1 ) α ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 t 1 t 2 ( ψ ( t 2 ) ψ ( μ ) ) α 1 f ( μ ) ψ ( μ ) d μ = f ( t 1 ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 I t 1 + α ; ψ f ( t 2 ) .
Thus, by (4)–(6), we get
I = f ( t 1 ) + f ( t 2 ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 [ I t 1 + α ; ψ f ( t 2 ) + I t 2 α ; ψ f ( t 1 ) ] .
This implies that equality (3) is true.  □
Based on Theorem 1, we can obtain the following Theorems 2 and 3.
Theorem 2.
If the function f : [ t 1 , t 2 ] R is differentiable, then for the ψ-fractional integrals in (1) and (2), we have
Γ ( α + 1 ) 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α [ I t 1 + α ; ψ f ( t 2 ) + I t 2 α ; ψ f ( t 1 ) ] f t 1 + t 2 2 = t 2 t 1 2 0 1 g ( μ ) f ( μ t 1 + ( 1 μ ) t 2 ) d μ ψ ( t 2 ) ψ ( t 1 ) 2 0 1 [ ( 1 μ ) α μ α ] f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) · ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ ,
where
g ( μ ) = 1 , μ [ 0 , 1 2 ) , 1 , μ [ 1 2 , 1 ] .
Proof. 
Notice that
t 2 t 1 2 0 1 g ( μ ) f ( μ t 1 + ( 1 μ ) t 2 ) d μ = t 2 t 1 2 0 1 2 f ( μ t 1 + ( 1 μ ) t 2 ) d μ t 2 t 1 2 1 2 1 f ( μ t 1 + ( 1 μ ) t 2 ) d μ = 1 2 f ( μ t 1 + ( 1 μ ) t 2 ) | 0 1 2 + 1 2 f ( μ t 1 + ( 1 μ ) t 2 ) | 1 2 1 = f ( t 1 ) + f ( t 2 ) 2 f t 1 + t 2 2 .
Combining (3) from Theorem 1 and (9), we get (8).  □
Theorem 3.
Let the function f : [ t 1 , t 2 ] R be differentiable. Then,
Γ ( α + 1 ) 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α [ I t 1 + α ; ψ f ( t 2 ) + I t 2 α ; ψ f ( t 1 ) ] f ζ ψ ( t 1 ) + ψ ( t 2 ) 2 = ψ ( t 2 ) ψ ( t 1 ) 2 0 1 g ( μ ) f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ 0 1 [ ( 1 μ ) α μ α ] f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 2 ) ) d μ ,
where
g ( μ ) = 1 , μ [ 0 , 1 2 ) , 1 , μ [ 1 2 , 1 ] .
Proof. 
Observe
ψ ( t 2 ) ψ ( t 1 ) 2 0 1 g ( μ ) f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ = ψ ( t 2 ) ψ ( t 1 ) 2 0 1 2 f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ ψ ( t 2 ) ψ ( t 1 ) 2 1 2 1 f ( ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) ) ζ ( ( 1 μ ) ψ ( t 2 ) + μ ψ ( t 1 ) ) d μ = 1 2 f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) | 0 1 2 + 1 2 f ( ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ) | 1 2 1 = f ( t 1 ) + f ( t 2 ) 2 f ζ ψ ( t 1 ) + ψ ( t 2 ) 2 .
Combining (11) of Theorem 1 and (3), we get the equality (10).  □
The following result involves a point μ between t 1 and t 2 .
Theorem 4.
If the function f : [ t 1 , t 2 ] R is differentiable, then we have
Γ ( α + 1 ) [ I t α ; ψ f ( t 1 ) + I t + α ; ψ f ( t 2 ) ] [ f ( t 1 ) ( ψ ( μ ) ψ ( t 1 ) ) α + f ( t 2 ) ( ψ ( t 2 ) ψ ( μ ) ) α ] = ( ψ ( t 2 ) ψ ( μ ) ) α + 1 0 1 ( s α 1 ) f ( ζ ( ( 1 s ) ψ ( t 2 ) + s ψ ( μ ) ) ) ζ ( ( 1 s ) ψ ( t 2 ) + s ψ ( μ ) ) d s ( ψ ( μ ) ψ ( t 1 ) ) α + 1 0 1 ( s α 1 ) f ( ζ ( ( 1 s ) ψ ( t 1 ) + s ψ ( μ ) ) ) · ζ ( ( 1 s ) ψ ( t 1 ) + s ψ ( μ ) ) d s ,
where μ ( t 1 , t 2 ) .
Proof. 
Observe
0 1 ( s α 1 ) f ( ζ ( ( 1 s ) ψ ( t 2 ) + s ψ ( μ ) ) ) ζ ( ( 1 s ) ψ ( t 2 ) + s ψ ( μ ) ) d s = 1 ψ ( μ ) ψ ( t 2 ) ( s α 1 ) f ( ζ ( s ψ ( μ ) + ( 1 s ) ψ ( t 2 ) ) ) | 0 1 + α ψ ( t 2 ) ψ ( μ ) 0 1 s α 1 f ( ζ ( s ψ ( μ ) + ( 1 s ) ψ ( t 2 ) ) ) d s = f ( t 2 ) ψ ( t 2 ) ψ ( μ ) + α ( ψ ( t 2 ) ψ ( μ ) ) α + 1 t t 2 ( ψ ( t 2 ) ψ ( s ) ) α 1 f ( s ) ψ ( s ) d s = f ( t 2 ) ψ ( t 2 ) ψ ( μ ) + Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( μ ) ) α + 1 I t + α ; ψ f ( t 2 ) ,
and
0 1 ( s α 1 ) f ( ζ ( ( 1 s ) ψ ( t 1 ) + s ψ ( μ ) ) ) ζ ( ( 1 s ) ψ ( t 1 ) + s ψ ( μ ) ) d s = 1 ψ ( μ ) ψ ( t 1 ) ( s α 1 ) f ( ζ ( s ψ ( μ ) + ( 1 s ) ψ ( t 1 ) ) ) | 0 1 α ψ ( μ ) ψ ( t 1 ) 0 1 s α 1 f ( ζ ( s ψ ( μ ) + ( 1 s ) ψ ( t 1 ) ) ) d s = f ( t 1 ) ψ ( μ ) ψ ( t 1 ) α ( ψ ( μ ) ψ ( t 1 ) ) α + 1 t 1 t ( ψ ( s ) ψ ( t 1 ) α 1 f ( s ) ψ ( s ) d s = f ( t 1 ) ψ ( μ ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( μ ) ψ ( t 1 ) ) α + 1 I t α ; ψ f ( t 1 ) .
Combining (13) and (14), we get the result (12).  □
Next, we will give two equalities involving function ϕ .
Theorem 5.
Let the function f : [ t 1 , t 2 ] R be differentiable. If f L [ t 1 , t 2 ] , then
ϕ ( t 1 ) + ϕ ( t 2 ) 2 Γ ( α + 1 ) 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α [ I t 1 + α ; ψ ϕ ( t 2 ) + I t 2 α ; ψ ϕ ( t 1 ) ] = t 2 t 1 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α 0 1 g ( s ) ϕ ( ( 1 s ) t 1 + t 2 s ) d s ,
where
g ( μ ) = ( ψ ( ( 1 μ ) t 1 + t 2 μ ) ψ ( t 1 ) ) α ( ψ ( t 2 ) ψ ( ( 1 μ ) t 1 + t 2 μ ) ) α .
Proof. 
Write
I = 0 1 g ( s ) ϕ ( ( 1 s ) t 1 + t 2 s ) d s = 0 1 ( ψ ( ( 1 s ) t 1 + t 2 s ) ψ ( t 1 ) ) α ϕ ( ( 1 s ) t 1 + t 2 s ) d s 0 1 ( ψ ( t 2 ) ψ ( ( 1 s ) t 1 + t 2 s ) ) α ϕ ( ( 1 s ) t 1 + t 2 s ) d s = I 1 + I 2 .
Then, for I 1 , we have
I 1 = 0 1 ( ψ ( ( 1 s ) t 1 + t 2 s ) ψ ( t 1 ) ) α ϕ ( ( 1 s ) t 1 + t 2 s ) d s = 1 t 2 t 1 t 1 t 2 ( ψ ( s ) ψ ( t 1 ) ) α d ϕ ( s ) = ( ψ ( s ) ψ ( t 1 ) ) α ϕ ( s ) t 2 t 1 | t 1 t 2 α t 2 t 1 t 1 t 2 ψ ( s ) ( ψ ( s ) ψ ( t 1 ) ) 1 α ϕ ( s ) d s = ( ψ ( t 2 ) ψ ( t 1 ) ) α t 2 t 1 ϕ ( t 2 ) Γ ( α + 1 ) t 2 t 1 I t 2 α ; ψ ϕ ( t 1 ) .
For I 2 , we obtain
I 2 = 0 1 ( ψ ( t 2 ) ψ ( ( 1 s ) t 1 + t 2 s ) ) α ϕ ( ( 1 s ) t 1 + t 2 s ) d s = 1 t 2 t 1 t 1 t 2 ( ψ ( t 2 ) ψ ( s ) ) α d ϕ ( s ) = ( ψ ( t 2 ) ψ ( s ) ) α ϕ ( s ) t 2 t 1 | t 1 t 2 α t 2 t 1 t 1 t 2 ψ ( s ) ( ψ ( t 2 ) ψ ( s ) ) 1 α ϕ ( s ) d s = ( ψ ( t 2 ) ψ ( t 1 ) ) α t 2 t 1 ϕ ( t 1 ) Γ ( α + 1 ) t 2 t 1 I t 1 + α ; ψ ϕ ( t 2 ) .
By adding (16) and (17), we get
I = ( ψ ( t 2 ) ψ ( t 1 ) ) α t 2 t 1 [ ϕ ( t 1 ) + ϕ ( t 2 ) ] Γ ( α + 1 ) t 2 t 1 [ I t 2 α ; ψ ϕ ( t 1 ) + I t 1 + α ; ψ ϕ ( t 2 ) ] .
This implies that the equality (15) is true.  □
Theorem 6.
Let f : [ t 1 , t 2 ] R be a differentiable function and f L [ t 1 , t 2 ] . If h : [ t 1 , t 2 ] R is integrable, then
ϕ ( t 1 ) + ϕ ( t 2 ) 2 [ I t 1 + α ; ψ h ( t 2 ) + I t 2 α ; ψ h ( t 1 ) ] [ I t 1 + α ; ψ ( h ϕ ) ( t 2 ) + I t 2 α ; ψ ( h ϕ ) ( t 1 ) ] = 1 2 Γ ( α ) t 1 t 2 t 1 t p ( s ) h ( s ) d s t t 2 p ( s ) h ( s ) d s ϕ ( μ ) d μ ,
where
p ( μ ) = ψ ( μ ) ( ψ ( t 2 ) ψ ( μ ) ) 1 α + ψ ( μ ) ( ψ ( μ ) ψ ( t 1 ) ) 1 α .
Proof. 
Write
I = t 1 t 2 t 1 t p ( s ) h ( s ) d s t t 2 p ( s ) h ( s ) d s ϕ ( μ ) d μ = t 1 t 2 t 1 t p ( s ) h ( s ) d s ϕ ( μ ) d μ t 1 t 2 t t 2 p ( s ) h ( s ) d s ϕ ( μ ) d μ = I 1 + I 2 .
Then, for I 1 , we have
I 1 = t 1 t 2 t 1 t p ( s ) h ( s ) d s ϕ ( μ ) d μ = t 1 t p ( s ) h ( s ) d s ϕ ( μ ) | t 1 t 2 t 1 t 2 p ( μ ) h ( μ ) ϕ ( μ ) d μ = t 1 t 2 p ( s ) h ( s ) d s ϕ ( t 2 ) t 1 t 2 p ( μ ) h ( μ ) ϕ ( μ ) d μ = Γ ( α ) [ I t 1 + α ; ψ h ( t 2 ) + I t 2 α ; ψ h ( t 1 ) ] ϕ ( t 2 ) Γ ( α ) [ I t 1 + α ; ψ ( h ϕ ) ( t 2 ) + I t 2 α ; ψ ( h ϕ ) ( t 1 ) ] .
For I 2 , we obtain
I 2 = t 1 t 2 t t 2 p ( s ) h ( s ) d s ϕ ( μ ) d μ = t t 2 p ( s ) h ( s ) d s ϕ ( μ ) | t 1 t 2 t 1 t 2 p ( μ ) h ( μ ) ϕ ( μ ) d μ = t 1 t 2 p ( s ) h ( s ) d s ϕ ( t 1 ) t 1 t 2 p ( μ ) h ( μ ) ϕ ( μ ) d μ = Γ ( α ) [ I t 1 + α ; ψ h ( t 2 ) + I t 1 α ; ψ h ( t 1 ) ] ϕ ( t 1 ) Γ ( α ) [ I t 1 + α ; ψ ( h ϕ ) ( t 2 ) + I t 2 α ; ψ ( h ϕ ) ( t 1 ) ] .
Combining (19) and (20), we get
I = Γ ( α ) [ I t 1 + α ; ψ h ( t 2 ) + I t 2 α ; ψ h ( t 1 ) ] ( ϕ ( t 1 ) + ϕ ( t 2 ) ) 2 Γ ( α ) [ I t 1 + α ; ψ ( h ϕ ) ( t 2 ) + I t 2 α ; ψ ( h ϕ ) ( t 1 ) ] .
This implies the equality (18).  □
For the last result of this section, we suppose that ψ ( 0 ) = 0 and ψ ( 1 ) = 1 .
Theorem 7.
Let the function f : [ ψ ( t 1 ) , ψ ( t 2 ) ] R be differentiable. Then, the following equality holds:
f ( ψ ( t 1 ) ) + f ( ψ ( t 2 ) ) 2 Γ ( α + 1 ) 2 ( ψ ( t 2 ) ψ ( t 1 ) ) α [ I t 1 + α ; ψ f ψ ( t 2 ) + I t 2 α ; ψ f ψ ( t 1 ) ] = ψ ( t 2 ) ψ ( t 1 ) 2 0 1 [ ( 1 ψ ( μ ) ) α ψ α ( μ ) ] ψ ( μ ) · f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ ,
where f ψ ( μ ) = f ( ψ ( μ ) ) .
Proof. 
Write
I = 0 1 [ ( 1 ψ ( μ ) ) α ψ α ( μ ) ] ψ ( μ ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = 0 1 ( 1 ψ ( μ ) ) α ψ ( μ ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ 0 1 ψ α ( μ ) ψ ( μ ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = I 1 + I 2 .
Then, for I 1 , we get
I 1 = 0 1 ( 1 ψ ( μ ) ) α ψ ( μ ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = ( 1 ψ ( μ ) ) α ψ ( t 1 ) ψ ( t 2 ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) | 0 1 + 0 1 α ( 1 ψ ( μ ) ) α 1 ψ ( μ ) ψ ( t 1 ) ψ ( t 2 ) f ( ( 1 ψ ( t ) y ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = f ( ψ ( t 2 ) ) ψ ( t 2 ) ψ ( t 1 ) α ψ ( t 2 ) ψ ( t 1 ) t 1 t 2 ψ ( μ ) ψ ( t 1 ) ψ ( t 2 ) ψ ( t 1 ) α 1 ψ ( t ) y ψ ( t 2 ) ψ ( t 1 ) f ( ψ ( μ ) ) d μ = f ( ψ ( t 2 ) ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 I t 2 α ; ψ f ψ ( t 1 ) .
For I 2 , we have
I 2 = 0 1 ψ α ( μ ) ψ ( μ ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = ψ α ( μ ) ψ ( t 2 ) ψ ( t 1 ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) | 0 1 0 1 α ψ α 1 ( μ ) ψ ( μ ) ψ ( t 2 ) ψ ( t 1 ) f ( ( 1 ψ ( μ ) ) ψ ( t 2 ) + ψ ( μ ) ψ ( t 1 ) ) d μ = f ( ψ ( t 1 ) ) ψ ( t 2 ) ψ ( t 1 ) α ψ ( t 2 ) ψ ( t 1 ) t 1 t 2 ψ ( t 2 ) ψ ( μ ) ψ ( t 2 ) ψ ( t 1 ) α 1 ψ ( μ ) ψ ( t 2 ) ψ ( t 1 ) f ( ψ ( μ ) ) d μ = f ( ψ ( t 1 ) ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 I t 1 + α ; ψ f ψ ( t 2 ) .
By (22) and (23), we see that
I = f ( ψ ( t 1 ) ) + f ( ψ ( t 2 ) ) ψ ( t 2 ) ψ ( t 1 ) Γ ( α + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) α + 1 [ I t 1 + α ; ψ f ψ ( t 2 ) + I t 2 α ; ψ f ψ ( t 1 ) ] ,
which means that equality (21) is true.  □

3. Applications

To illustrate the applicability of the new equalities established in previous section, we give two examples in this section.
Example 1.
The arithmetic mean A is defined by
A ( t 1 , t 2 ) : = t 1 + t 2 2 , t 1 , t 2 > 0 .
Now, we introduce the following ψ-means M ψ and M ¯ ψ , n :
M ψ ( t 1 , t 2 ) : = t 1 t 2 μ ψ ( μ ) d μ ψ ( t 2 ) ψ ( t 1 ) , t 1 t 2 ,
and
M ¯ ψ , n ( t 1 , t 2 ) : = ψ n + 1 ( t 2 ) ψ n + 1 ( t 1 ) ( n + 1 ) ( ψ ( t 2 ) ψ ( t 1 ) ) , t 1 t 2 , n N .
As we can see from (24) that the ψ-mean M ψ ( t 1 , t 2 ) is just the following logarithmic mean [25] when ψ ( μ ) = ln μ :
L ( t 1 , t 2 ) : = t 2 t 1 ln t 2 ln t 1 , t 1 t 2 .
Moreover, we see that, when ψ ( μ ) = μ , the ψ-mean M ψ ( t 1 , t 2 ) is just the arithmetic mean A ( t 1 , t 2 ) .
The following two results, which are deduced by virtue of our new equalities in the last section, show new relationships between the arithmetic mean A and the two ψ-means above.
Theorem 8.
Let 0 < t 1 < t 2 . Then,
| A ( t 1 , t 2 ) M ψ ( t 1 , t 2 ) | ψ ( t 2 ) ψ ( t 1 ) 2 ( q + 1 ) 1 / q 0 1 [ ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ] q d μ 1 / q ,
where q > 1 and 1 q + 1 q = 1 .
Proof. 
Taking α = 1 and f ( μ ) = μ in Theorem 1 and using the Hölder inequality, we obtain
| A ( t 1 , t 2 ) M ψ ( t 1 , t 2 ) | ψ ( t 2 ) ψ ( t 1 ) 2 0 1 | 1 2 μ | ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) d μ ψ ( t 2 ) ψ ( t 1 ) 2 0 1 | 1 2 μ | q d μ 1 / q 0 1 [ ζ ( μ ψ ( t 1 ) + ( 1 μ ) ψ ( t 2 ) ) ] q d μ 1 / q .
Noticing that
0 1 | 1 2 μ | q d μ 1 / q = 1 ( q + 1 ) 1 / q ,
we get the desired result.  □
Theorem 9.
Let 0 < t 1 < t 2 , ψ ( 0 ) = 0 and ψ ( 1 ) = 1 . Then,
| A ( ψ n ( t 1 ) , ψ n ( t 2 ) ) M ¯ ψ , n ( t 1 , t 2 ) | n ( ψ ( t 2 ) ψ ( t 1 ) ) 1 1 / q 2 ( q + 1 ) 1 / q ( q ( n 1 ) + 1 ) 1 / q ψ q ( n 1 ) + 1 ( t 2 ) ψ q ( n 1 ) + 1 ( t 1 ) 1 / q ,
where q > 1 and 1 q + 1 q = 1 .
Proof. 
Taking α = 1 and f ( μ ) = μ n in Theorem 7 and using the Hölder inequality, we obtain
| A ( ψ n ( t 1 ) , ψ n ( t 2 ) ) M ¯ ψ , n ( t 1 , t 2 ) | n ( ψ ( t 2 ) ψ ( t 1 ) ) 2 0 1 | 1 2 ψ ( μ ) | ψ ( μ ) ( ψ ( μ ) ψ ( t 1 ) + ( 1 ψ ( μ ) ) ψ ( t 2 ) ) n 1 d μ n ( ψ ( t 2 ) ψ ( t 1 ) ) 2 0 1 | 1 2 ψ ( μ ) | q ψ ( μ ) d μ 1 / q · 0 1 [ ψ ( μ ) ψ ( t 1 ) + ( 1 ψ ( μ ) ) ψ ( t 2 ) ] q ( n 1 ) ψ ( μ ) d μ 1 / q .
Observing that
0 1 [ ψ ( μ ) ψ ( t 1 ) + ( 1 ψ ( μ ) ) ψ ( t 2 ) ] q ( n 1 ) ψ ( μ ) d μ 1 / q = ψ q ( n 1 ) + 1 ( t 2 ) ψ q ( n 1 ) + 1 ( t 1 ) 1 / q ( q ( n 1 ) + 1 ) 1 / q ( ψ ( t 2 ) ψ ( t 1 ) ) 1 / q ,
we get the desired result.  □
Example 2.
Consider the following fractional integrodifferential equations of Sobolev type with nonlocal conditions in R :
c D ψ ; α u ( t ) = f t , u ( t ) , a t ρ ( t , s ) h ( t , s , u ( s ) ) d s , t J : = [ a , T ] , u ( a ) = u a g ( u ) ,
where c D ψ ; α , α ( 0 , 1 ) , is the ψ-Caputo fractional derivative of order α with the lower limit a > 0 , u a R and g : C ( J , R ) R , f : J × R × R R , ρ : Δ R and h : Δ × R R ( Δ = { ( t , s ) [ a , T ] × [ a , T ] : t s } ) are given functions.
Applying the operator I a + α ; ψ to the first equation of the problem (25), we get for each t ( a , T ] ,
u ( t ) = u ( a ) + 1 Γ ( α ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 f s , u ( s ) , a s ρ ( s , τ ) h ( s , τ , u ( τ ) ) d τ d s = u a g ( u ) + 1 Γ ( α ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 f s , u ( s ) , a s ρ ( s , τ ) h ( s , τ , u ( τ ) ) d τ d s .
Substituting (26) into (3) of Theorem 1 with f = u , t 1 = a and t 2 = t , we can obtain
u a g ( u ) + 1 2 Γ ( α ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 f s , u ( s ) , a s ρ ( s , τ ) h ( s , τ , u ( τ ) ) d τ d s α 2 ( ψ ( t ) ψ ( a ) ) α a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 u ( s ) d s + a t ψ ( s ) ( ψ ( s ) ψ ( a ) ) α 1 u ( s ) d s = ψ ( t ) ψ ( a ) 2 0 1 [ ( 1 s ) α s α ] ζ ( s ψ ( a ) + ( 1 s ) ψ ( t ) ) u ( ζ ( s ψ ( a ) + ( 1 s ) ψ ( t ) ) ) d s .
Therefore, we have
a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 u ( s ) d s + a t ψ ( s ) ( ψ ( s ) ψ ( a ) ) α 1 u ( s ) d s = 2 ( ψ ( t ) ψ ( a ) ) α α ( u a g ( u ) ) + ( ψ ( t ) ψ ( a ) ) α Γ ( α + 1 ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 f s , u ( s ) , a s ρ ( s , τ ) h ( s , τ , u ( τ ) ) d τ d s ( ψ ( t ) ψ ( a ) ) α + 1 α 0 1 [ ( 1 s ) α s α ] ζ ( s ψ ( a ) + ( 1 s ) ψ ( t ) ) u ( ζ ( s ψ ( a ) + ( 1 s ) ψ ( t ) ) ) d s .
Using the fact that | a α b α | | a b | α ( a , b > 0 ; 0 < α < 1 ) and Hölder inequality to (27), we obtain the following result.
Theorem 10.
For each solution u ( t ) C 1 [ a , T ] of the problem (25), if | u ( t ) | M , then we have the following prior estimate:
| a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 u ( s ) d s + a t ψ ( s ) ( ψ ( s ) ψ ( a ) ) α 1 u ( s ) d s | 2 ( ψ ( t ) ψ ( a ) ) α α | u a g ( u ) | + ( ψ ( t ) ψ ( a ) ) α Γ ( α + 1 ) a t ψ ( s ) ( ψ ( t ) ψ ( s ) ) α 1 | f s , u ( s ) , a s ρ ( s , τ ) h ( s , τ , u ( τ ) ) d τ | d s + M ( ψ ( t ) ψ ( a ) ) α + 1 q 1 / q α 1 + 1 / q 0 1 [ ζ ( s ψ ( a ) + ( 1 s ) ψ ( t ) ) ] q d s 1 / q , t [ a , T ] ,
where q > 1 and 1 q + 1 q = 1 .

4. Conclusions

In this paper, we present new properties for ψ -fractional integrals involving a general function ψ by establishing several new equalities for the ψ -fractional integrals. The ψ -fractional integrals are generalizations of Riemann–Liouville fractional integrals and Hadamard fractional integrals, and our equalities are more general and new. To illustrate the applicability of our new equalities, we introduce the ψ -means and explore the relationships between the arithmetic mean and the ψ -means with the aid of our equalities. Moreover, we use our equalities to obtain an prior estimate for a class of fractional differential equations. How to study the properties of solutions to fractional equations involving ψ -Caputo fractional derivative? How to reveal other new properties about ψ -fractional integrals? How to find more applications of these properties? We will pay our attention to these problems in our future research.

Author Contributions

All the authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding

The work was supported partly by the NSF of China (11571229).

Acknowledgments

The authors would like to thank the reviewers very much for valuable comments and suggestions.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Anderson, J.; Moradi, S.; Rafiq, T. Nonlinear Langevin and fractional Fokker-Planck equations for anomalous diffusion by Lévy stable processes. Entropy 2018, 20, 760. [Google Scholar] [CrossRef]
  2. Anguraj, A.; Karthikeyan, P.; Rivero, M.; Trujillo, J.J. On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 2014, 66, 2587–2594. [Google Scholar] [CrossRef]
  3. Chalishajar, D.N.; Karthikeyan, K. Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces. Acta Math. Sci. 2013, 33, 758–772. [Google Scholar] [CrossRef]
  4. Chalishajar, D.N.; Karthikeyan, K. Existence of mild solutions for second order non-local impulsive neutral evolution equations with state-dependent infinite delay. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2019, 26, 53–68. [Google Scholar]
  5. Chalishajar, D.N.; Karthikeyan, K.; Trujillo, J.J. Existence of mild solutions for fractional impulsive semilinear integro-differential equations in Banach spaces. Commun. Appl. Nonlinear Anal. 2012, 19, 45–56. [Google Scholar]
  6. Diagana, T. Existence of solutions to some classes of partial fractional differential equations. Nonlinear Anal. 2009, 71, 5296–5300. [Google Scholar] [CrossRef]
  7. Diagana, T.; Mophou, G.; N’Guerekata, G.M. On the existence of mild solutions to some semilinear fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 58, 1–17. [Google Scholar] [CrossRef]
  8. El-Borai, M.M. Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 2002, 14, 433–440. [Google Scholar] [CrossRef]
  9. Favaron, A.; Favini, A. Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations. Tsukuba J. Math. 2011, 35, 259–323. [Google Scholar] [CrossRef]
  10. Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef] [Green Version]
  11. Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space. Appl. Anal. 2018, 97, 571–591. [Google Scholar] [CrossRef]
  12. Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces. Fixed Point Theory Appl. 2017, 2017, 28. [Google Scholar] [CrossRef]
  13. Ke, T.D.; Obukhovskii, V.; Wong, N.C.; Yao, J.C. On a class of fractional order differential inclusions with infinite delays. Appl. Anal. 2013, 92, 115–137. [Google Scholar] [CrossRef]
  14. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equaations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  15. Li, F.; Liang, J.; Xu, H.K. Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 2012, 391, 510–525. [Google Scholar] [CrossRef] [Green Version]
  16. Li, F.; Liang, J.; Wang, H.W. S-asymptotically ω-periodic solution for fractional differential equations of order q ∈ (0,1) with finite delay. Adv. Differ. Equ. 2017, 2017, 183. [Google Scholar]
  17. Liang, J.; Mu, Y.; Xiao, T.J. Solutions to fractional Sobolev-type integro-differential equations in Banach spaces with operator pairs and impulsive conditions. Banach J. Math. Anal. 2019. to appear. [Google Scholar]
  18. Liang, J.; Mu, Y. Mild solutions to the Cauchy problem for some fractional differential equations with delay. Axioms 2017, 6, 30. [Google Scholar] [CrossRef]
  19. Lv, Z.W.; Liang, J.; Xiao, T.J. Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 2011, 62, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
  20. Mophou, G.; N’Guérékata, G.M. Mild solutions for semilinear fractional differential equations. Electron. J. Differ. Equ. 2009, 2009, 1–9. [Google Scholar]
  21. Mophou, G.; N’Guérékata, G.M. Existence of mild solutions for some fractional differential equations with nonlocal conditions. Semigroup Forum 2009, 79, 315–322. [Google Scholar] [CrossRef]
  22. Osler, T.J. Leibniz rule for fractional derivatives and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
  23. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
  24. Skiadas, C. Fractional Dynamics, Anomalous Transport and Plasma Science: Lectures from CHAOS2017; Springer: Berlin, Germany, 2018. [Google Scholar]
  25. Carlson, B.C. The Logarithmic Mean. Am. Math. Mon. 1972, 79, 615–618. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Liang, J.; Mu, Y. Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics 2019, 7, 517. https://doi.org/10.3390/math7060517

AMA Style

Liang J, Mu Y. Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics. 2019; 7(6):517. https://doi.org/10.3390/math7060517

Chicago/Turabian Style

Liang, Jin, and Yunyi Mu. 2019. "Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications" Mathematics 7, no. 6: 517. https://doi.org/10.3390/math7060517

APA Style

Liang, J., & Mu, Y. (2019). Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics, 7(6), 517. https://doi.org/10.3390/math7060517

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop