Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications
Abstract
:1. Introduction
- (i)
- (ii)
2. Equalities for -Fractional Integrals
3. Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, J.; Moradi, S.; Rafiq, T. Nonlinear Langevin and fractional Fokker-Planck equations for anomalous diffusion by Lévy stable processes. Entropy 2018, 20, 760. [Google Scholar] [CrossRef]
- Anguraj, A.; Karthikeyan, P.; Rivero, M.; Trujillo, J.J. On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 2014, 66, 2587–2594. [Google Scholar] [CrossRef]
- Chalishajar, D.N.; Karthikeyan, K. Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces. Acta Math. Sci. 2013, 33, 758–772. [Google Scholar] [CrossRef]
- Chalishajar, D.N.; Karthikeyan, K. Existence of mild solutions for second order non-local impulsive neutral evolution equations with state-dependent infinite delay. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2019, 26, 53–68. [Google Scholar]
- Chalishajar, D.N.; Karthikeyan, K.; Trujillo, J.J. Existence of mild solutions for fractional impulsive semilinear integro-differential equations in Banach spaces. Commun. Appl. Nonlinear Anal. 2012, 19, 45–56. [Google Scholar]
- Diagana, T. Existence of solutions to some classes of partial fractional differential equations. Nonlinear Anal. 2009, 71, 5296–5300. [Google Scholar] [CrossRef]
- Diagana, T.; Mophou, G.; N’Guerekata, G.M. On the existence of mild solutions to some semilinear fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 58, 1–17. [Google Scholar] [CrossRef]
- El-Borai, M.M. Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 2002, 14, 433–440. [Google Scholar] [CrossRef]
- Favaron, A.; Favini, A. Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations. Tsukuba J. Math. 2011, 35, 259–323. [Google Scholar] [CrossRef]
- Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space. Appl. Anal. 2018, 97, 571–591. [Google Scholar] [CrossRef]
- Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J.C. On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces. Fixed Point Theory Appl. 2017, 2017, 28. [Google Scholar] [CrossRef]
- Ke, T.D.; Obukhovskii, V.; Wong, N.C.; Yao, J.C. On a class of fractional order differential inclusions with infinite delays. Appl. Anal. 2013, 92, 115–137. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equaations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Li, F.; Liang, J.; Xu, H.K. Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 2012, 391, 510–525. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liang, J.; Wang, H.W. S-asymptotically ω-periodic solution for fractional differential equations of order q ∈ (0,1) with finite delay. Adv. Differ. Equ. 2017, 2017, 183. [Google Scholar]
- Liang, J.; Mu, Y.; Xiao, T.J. Solutions to fractional Sobolev-type integro-differential equations in Banach spaces with operator pairs and impulsive conditions. Banach J. Math. Anal. 2019. to appear. [Google Scholar]
- Liang, J.; Mu, Y. Mild solutions to the Cauchy problem for some fractional differential equations with delay. Axioms 2017, 6, 30. [Google Scholar] [CrossRef]
- Lv, Z.W.; Liang, J.; Xiao, T.J. Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 2011, 62, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Mophou, G.; N’Guérékata, G.M. Mild solutions for semilinear fractional differential equations. Electron. J. Differ. Equ. 2009, 2009, 1–9. [Google Scholar]
- Mophou, G.; N’Guérékata, G.M. Existence of mild solutions for some fractional differential equations with nonlocal conditions. Semigroup Forum 2009, 79, 315–322. [Google Scholar] [CrossRef]
- Osler, T.J. Leibniz rule for fractional derivatives and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Skiadas, C. Fractional Dynamics, Anomalous Transport and Plasma Science: Lectures from CHAOS2017; Springer: Berlin, Germany, 2018. [Google Scholar]
- Carlson, B.C. The Logarithmic Mean. Am. Math. Mon. 1972, 79, 615–618. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Mu, Y. Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics 2019, 7, 517. https://doi.org/10.3390/math7060517
Liang J, Mu Y. Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics. 2019; 7(6):517. https://doi.org/10.3390/math7060517
Chicago/Turabian StyleLiang, Jin, and Yunyi Mu. 2019. "Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications" Mathematics 7, no. 6: 517. https://doi.org/10.3390/math7060517
APA StyleLiang, J., & Mu, Y. (2019). Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications. Mathematics, 7(6), 517. https://doi.org/10.3390/math7060517