A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations
Abstract
:1. Introductory Notes
1.1. Background
1.2. Definition
1.3. Existing Solvers
1.4. Motivation
1.5. Achievement and Contribution
1.6. Organization
2. A Derivative-Free Scheme
3. Rate of Convergence
4. Efficiency
- To evaluate A, m evaluations of functions are required.
- To evaluate the associated Jacobian matrix needs evaluations of functions.
- To evaluate the first-order DDO, we need evaluations of functions.
- In addition, the LU factorization cost is plus in tackling the two involved triangular systems.
5. Computational Tests
5.1. An Academical Test
5.2. An Integral Equation Using a Collocation Approach
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qasim, S.; Ali, Z.; Ahmad, F.; Serra-Capizzano, S.; Ullah, M.Z.; Mahmood, A. Solving systems of nonlinear equations when the nonlinearity is expensive. Comput. Math. Appl. 2016, 71, 1464–1478. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. Linear and Nonlinear Integral Equations; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Mashayekhi, S.; Razzaghi, M.; Tripak, O. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, E.O.; Al-Aidarous, E.S.; Younas, A.M.M.; Ahmad, F.; Ahmad, S.; Ahmad, S. A higher order frozen Jacobian iterative method for solving Hamilton-Jacobi equations. J. Nonlinear Sci. Appl. 2016, 9, 6210–6227. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F. Pricing multi–asset option problems: A Chebyshev pseudo–spectral method. BIT Numer. Math. 2019, 59, 243–270. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Noda, T. The Steffensen iteration method for systems of nonlinear equations. Proc. Jpn. Acad. 1987, 63, 186–189. [Google Scholar] [CrossRef]
- Grau-Sánchez, M.; Grau, À.; Noguera, M. On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 2011, 236, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: New York, NY, USA, 1964. [Google Scholar]
- Amat, S.; Busquier, S. Convergence and numerical analysis of a family of two-step Steffensen’s methods. Comput. Math. Appl. 2005, 49, 13–22. [Google Scholar] [CrossRef]
- Soleymani, F.; Sharifi, M.; Shateyi, S.; Haghani, F.K. A class of Steffensen-type iterative methods for nonlinear systems. J. Appl. Math. 2014, 2014. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 2008, 200, 452–458. [Google Scholar] [CrossRef]
- Alaidarous, E.S.; Ullah, M.Z.; Ahmad, F.; Al-Fhaid, A.S. An efficient higher-order quasilinearization method for solving nonlinear BVPs. J. Appl. Math. 2013, 2013. [Google Scholar] [CrossRef]
- Hanaç, E. The phase plane analysis of nonlinear equation. J. Math. Anal. 2018, 9, 89–97. [Google Scholar]
- Hasan, P.M.A.; Sulaiman, N.A. Numerical treatment of mixed Volterra-Fredholm integral equations using trigonometric functions and Laguerre polynomials. ZANCO J. Pure Appl. Sci. 2018, 30, 97–106. [Google Scholar]
- Qasim, U.; Ali, Z.; Ahmad, F.; Serra-Capizzano, S.; Ullah, M.Z.; Asma, M. Constructing frozen Jacobian iterative methods for solving systems of nonlinear equations, associated with ODEs and PDEs using the homotopy method. Algorithms 2016, 9, 18. [Google Scholar] [CrossRef]
- Ahmad, F.; Soleymani, F.; Khaksar Haghani, F.; Serra-Capizzano, S. Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations. Appl. Math. Comput. 2017, 314, 199–211. [Google Scholar] [CrossRef]
- Bellavia, S.; Bertaccini, D.; Morini, B. Nonsymmetric preconditioner updates in Newton-Krylov methods for nonlinear systems. SIAM J. Sci. Comput. 2011, 33, 2595–2619. [Google Scholar] [CrossRef]
- Bellavia, S.; Morini, B.; Porcelli, M. New updates of incomplete LU factorizations and applications to large nonlinear systems. Optim. Methods Softw. 2014, 29, 321–340. [Google Scholar] [CrossRef]
- Bertaccini, D.; Durastante, F. Interpolating preconditioners for the solution of sequence of linear systems. Comput. Math. Appl. 2016, 72, 1118–1130. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, D.; Argyros, I.K.; Magreñán, Á.A. On a bi-parametric family of fourth order composite Newton-Jarratt methods for nonlinear systems. Mathematics 2019, 7, 492. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Montazeri, H.; Soleymani, F.; Shateyi, S.; Motsa, S.S. On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Sánchez León, J.G. Mathematica Beyond Mathematics: The Wolfram Language in the Real World; Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wagon, S. Mathematica in Action, 3rd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Soheili, A.R.; Soleymani, F. Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations. Numer. Algorithms 2016, 71, 89–102. [Google Scholar] [CrossRef]
- Soleymani, F.; Barfeie, M. Pricing options under stochastic volatility jump model: A stable adaptive scheme. Appl. Numer. Math. 2019, 145, 69–89. [Google Scholar] [CrossRef]
Met. | ||||||||
---|---|---|---|---|---|---|---|---|
NM | 2.02 | |||||||
SM | 1.99 | |||||||
AM | 3.00 | |||||||
PM | 3.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, M.; Lotfi, T.; Brahmand, A. A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations. Mathematics 2019, 7, 637. https://doi.org/10.3390/math7070637
Rostami M, Lotfi T, Brahmand A. A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations. Mathematics. 2019; 7(7):637. https://doi.org/10.3390/math7070637
Chicago/Turabian StyleRostami, Mozafar, Taher Lotfi, and Ali Brahmand. 2019. "A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations" Mathematics 7, no. 7: 637. https://doi.org/10.3390/math7070637
APA StyleRostami, M., Lotfi, T., & Brahmand, A. (2019). A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations. Mathematics, 7(7), 637. https://doi.org/10.3390/math7070637