A Solution for Volterra Fractional Integral Equations by Hybrid Contractions
Abstract
:1. Introduction and Preliminaries
- there are and and a convergent series such that and
- The series is convergent for
- converges to 0 as for ;
- Λ is continuous at 0;
- for any
- In the statement above, for , we find particular form Reich–Rus–Ćirić type contraction,
- If , and , we find the following condition,
- If and , we have a Kannan type contraction,
- If and , we have
- If and , we get an interpolative contraction of Kannan type:
2. Main Results
- ()
- T is continuous at ρ;
- ()
- or, ;
- ()
- or, .
- ()
- T is continuous at such point ρ;
- ()
- or, ;
- ()
- or, ;
- (i)
- T is continuous at such point ρ;
- (ii)
- or, ;
- (iii)
- or,
- (i)
- T is continuous at such point ;
- (ii)
- or, .
- (i)
- T is continuous at such point ;
- (ii)
- or, .
- 1.
- for ;
- 2.
- for or ;
- 3.
- for ,
3. Application on Volterra Fractional Integral Equations
- (H1)
- There are constants and such that
- (H2)
- Such M and N verify that
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Acad. Naz. Lincei, VII. Ser. Rend. Cl. Sci. Fis. Mat. Natur. 1968, 45, 212–216. [Google Scholar]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
- Ćirić, L. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [Green Version]
- Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Reich-Rus-Ćirić Type Contractions on Partial Metric Spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Aydi, H.; Chen, C.M.; Karapinar, E. Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Karapinar, E. Interpolative Rus-Reich-Ciric Type Contractions Via Simulation Functions. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica 2019, in press. [Google Scholar]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On Interpolative Hardy-Rogers Type Contractions. Symmetry 2019, 11, 8. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; de Hierro, A.F.R.L. ω-Interpolative Ciric-Reich-Rus-Type Contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Belic, M.R.; Zhong, W.; Zhang, Y.; Xiao, M. Propagation Dynamics of a Light Beam in a Fractional Schrodinger Equation. Phys. Rev. Lett. 2015, 115, 180403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Y.; Zhang, Z.; Ahmed, N.; Zhang, Y.; Li, F.; Belic, M.R.; Xiao, M. Unveiling the Link Between Fractional Schrodinger Equation and Light Propagation in Honeycomb Lattice. Ann. Phys. 2017, 529, 1700149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, H.; Belic, M.R.; Zhu, Y.; Zhong, W.; Zhang, Y.; Christodoulides, D.N.; Xiao, M. PT symmetry in a fractional Schroodinger equation. Laser Photonics Rev. 2016, 10, 526–531. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Asad, J.H.; Blaszczyk, T. The Motion of a bead sliding on a wire in fractional sense. Acta Phys. Pol. A 2017, 131, 1561–1564. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Hajipour, M. A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 2017, 175, 718–737. [Google Scholar] [CrossRef]
- Dhage, B.C. Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations. Differ. Equ. Appl. 2013, 5, 155–184. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, B.; Aydi, H.; Karapınar, E.; Rakočević, V. A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. Mathematics 2019, 7, 694. https://doi.org/10.3390/math7080694
Alqahtani B, Aydi H, Karapınar E, Rakočević V. A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. Mathematics. 2019; 7(8):694. https://doi.org/10.3390/math7080694
Chicago/Turabian StyleAlqahtani, Badr, Hassen Aydi, Erdal Karapınar, and Vladimir Rakočević. 2019. "A Solution for Volterra Fractional Integral Equations by Hybrid Contractions" Mathematics 7, no. 8: 694. https://doi.org/10.3390/math7080694
APA StyleAlqahtani, B., Aydi, H., Karapınar, E., & Rakočević, V. (2019). A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. Mathematics, 7(8), 694. https://doi.org/10.3390/math7080694