Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets
Abstract
:1. Introduction
2. Main Results
- 1.
- If , we get
- 2.
- If and , then
- 3.
- If , and , we obtain
3. Applications to Special Means
- The arithmetic mean:.
- The logarithmic mean:.
- The generalized logarithmic mean:
Author Contributions
Funding
Conflicts of Interest
References
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite–Hadamard inequalities and applications. Math. Prepr. Arch. 2003, 2003, 463–817. [Google Scholar]
- Tarasov, V. Generalized memory: Fractional calculus approach. Fractal Fract. 2018, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Inequalities for the Generalized k-g-Fractional Integrals in Terms of Double Integral Means. In Advances in Mathematical Inequalities and Applications; Birkhäuser: Singapore, 2018; pp. 1–27. [Google Scholar]
- Mihai, M.V.; Mitroi, F.C. Hermite–Hadamard type inequalities obtained via Riemann–Liouville fractional calculus. Acta Math. Univ. Comen. 2014, 83, 209–215. [Google Scholar]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Özdemir, M.E. A theorem on mappings with bounded derivatives with applications to quadrature rules and means. Appl. Math. Comput. 2003, 138, 425–434. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. Some Integral Inequalities for h-Godunova-Levin Preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Kılıçman, A.; Parmar, R.K.; Rathie, A.K. Certain generalized fractional calculus formulas and integral transforms involving (p, q)-Mathieu-type series. Adv. Differ. Equ. 2019, 2019, 221. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for HH-convex functions. Acta Comment. Univ. Tartu. Math. 2018, 22, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. New refinements of the Hadamard inequality on coordinated convex function. J. Inequal. Appl. 2019, 2019, 192. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics 2019, 7, 1065. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their application. J. Inequal. Appl. 2019, 2019, 267. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; Sui, X. Generalized-convex functions on fractal sets. In Abstract and Applied Analysis; Hindawi: London, UK, 2014. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Mehreen, N.; Anwar, M. Integral inequalities for some convex functions via generalized fractional integrals. J. Inequal. Appl. 2018, 2018, 208. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Dubey, R.S.; Goswami, P. Some fractional integral inequalities for the Katugampola integral operator. AIMS Math. 2019, 4, 193–198. [Google Scholar] [CrossRef]
- Mercer, A.M. An improvement of the Gruss inequality. J. Inequal. Pure Appl. Math. 2005, 6, 93. [Google Scholar]
- Toplu, T.; Set, E.; Iscan, I.; Maden, S. Hermite-Hadamard type inequalities for p-convex functions via katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar]
- Lupinska, B.; Odzijewicz, T. A Lyapunov-type inequality with the Katugampola fractional derivative. Math. Methods Appl. Sci. 2018, 41, 8985–8996. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets. Mathematics 2020, 8, 53. https://doi.org/10.3390/math8010053
Almutairi O, Kılıçman A. Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets. Mathematics. 2020; 8(1):53. https://doi.org/10.3390/math8010053
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2020. "Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets" Mathematics 8, no. 1: 53. https://doi.org/10.3390/math8010053
APA StyleAlmutairi, O., & Kılıçman, A. (2020). Integral Inequalities for s-Convexity via Generalized Fractional Integrals on Fractal Sets. Mathematics, 8(1), 53. https://doi.org/10.3390/math8010053