Fractional q-Difference Inclusions in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- (1)
- is measurable for each
- (2)
- is upper semicontinuous for almost all
- (3)
- For eachthere existssuch that
- (a)
- Regularity, i.e.,if and only if B is precompact,
- (b)
- invariance under closure, i.e.,
- (c)
- semi-additivity, i.e.,
3. Existence Results
4. An Example
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Advanced Fractional Differential and Integral Equations; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Juan Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Tenreiro Machado, J.A.; Kiryakova, V. The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 307–336. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1987; (Translated from the Russian). [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Abdeljawad, T.; Alzabut, J. On Riemann–Liouville fractional q-difference equations and their application to retarded logistic type model. Math. Methods Appl. Sci. 2018, 18, 8953–8962. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Hamani, S.; Henderson, J. Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions. Math. Moravica 2019, 23, 107–118. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Ren, J.; Zhai, C. Characteristic of unique positive solution for a fractional q-difference equation with multistrip boundary conditions. Math. Commun. 2019, 24, 181–192. [Google Scholar]
- Ren, J.; Zhai, C. A fractional q-difference equation with integral boundary conditions and comparison theorem. Int. J. Nonlinear Sci. Numer. Simul. 2017, 18, 575–583. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y. A difference method for solving the q-fractional differential equations. Appl. Math. Lett. 2019, 98, 292–299. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Graef, J.R. Coupled systems of Hilfer fractional differential inclusions in Banach spaces. Commun. Pure Appl. Anal. 2018, 17, 2479–2493. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Agarwal, R.P. A study of nonlocal integro-multi-point boundary value problems of sequential fractional integro-differential inclusions. Dyn. Contin. Disc. Impuls. Syst. Ser. A Math. Anal. 2018, 25, 125–140. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Zhou, Y.; Alsaedi, A. A study of fractional differential equations and inclusions with nonlocal Erdélyi-Kober type integral boundary conditions. Bull. Iran. Math. Soc. 2018, 44, 1315–1328. [Google Scholar] [CrossRef]
- Wang, J.; Ibrahim, A.G.; O’Regan, D. Global attracting solutions to Hilfer fractional differential inclusions of Sobolev type with noninstantaneous impulses and nonlocal conditions. Nonlinear Anal. Model. Control 2019, 24, 775–803. [Google Scholar] [CrossRef] [Green Version]
- Adams, C. On the linear ordinary q-difference equation. Ann. Math. 1928, 30, 195–205. [Google Scholar] [CrossRef]
- Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Abbas, S.; Benchohra, M.; Laledj, N.; Zhou, Y. Existence and Ulam stability for implicit fractional q-difference equation. Adv. Differ. Equ. 2019, 2019, 480. [Google Scholar] [CrossRef]
- Ahmad, B. Boundary value problem for nonlinear third order q-difference equations. Electron. J. Differ. Equ. 2011, 94, 1–7. [Google Scholar] [CrossRef] [Green Version]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Am. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Etemad, S.; Ntouyas, S.K.; Ahmad, B. Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, L.K. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef] [Green Version]
- Zuo, M.; Hao, X. Existence results for impulsive fractional q-difference equation with antiperiodic boundary conditions. J. Funct. Spaces 2018, 2018, 3798342. [Google Scholar] [CrossRef]
- Hu, S.; Papageorgiou, N. Handbook of Multivalued Analysis, Volume I: Theory; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1997. [Google Scholar]
- Kisielewicz, M. Differential Inclusions and Optimal Control; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Smirnov, G.V. Introduction to the Theory of Differential Inclusions; Graduate Studies in Mathematics, Volumn 41; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, 2011, 292860. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K. Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q. Discuss. Math. Differ. Incl. Control Optim. 2014, 34, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Ayerbee Toledano, J.M.; Dominguez Benavides, T.; Lopez Acedo, G. Measures of Noncompactness in Metric Fixed Point Theory; Operator Theory, Advances and Applications; Birkhäuser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1997; Volumn 99. [Google Scholar]
- Heinz, H.P. On the behaviour of meusure of noncompacteness with respect of differentiation and integration of vector-valued function. Nonlinear Anal. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Losta, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Dhage, B.C. Some generalization of multi-valued version of Schauder’s fixed point theorem with applications. Cubo 2010, 12, 139–151. [Google Scholar] [CrossRef]
- O’Regan, D.; Precup, R. Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 2000, 245, 594–612. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, B.; Abbas, S.; Benchohra, M.; Alzaid, S.S. Fractional q-Difference Inclusions in Banach Spaces. Mathematics 2020, 8, 91. https://doi.org/10.3390/math8010091
Alqahtani B, Abbas S, Benchohra M, Alzaid SS. Fractional q-Difference Inclusions in Banach Spaces. Mathematics. 2020; 8(1):91. https://doi.org/10.3390/math8010091
Chicago/Turabian StyleAlqahtani, Badr, Saïd Abbas, Mouffak Benchohra, and Sara Salem Alzaid. 2020. "Fractional q-Difference Inclusions in Banach Spaces" Mathematics 8, no. 1: 91. https://doi.org/10.3390/math8010091
APA StyleAlqahtani, B., Abbas, S., Benchohra, M., & Alzaid, S. S. (2020). Fractional q-Difference Inclusions in Banach Spaces. Mathematics, 8(1), 91. https://doi.org/10.3390/math8010091