A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
3. Main Results
4. Application
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Agarwal, R.V. Nonlinear impulsive multi-order Caputo-Type generalized fractional differential equations with infinite delay. Mathematics 2019, 7, 1108. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Ellahi, R.; Khan, R.; Mohyud-Din, S.T. Extracting new solitary wave solutions of Benny–Luke equation and Phi-4 equation of fractional order by using (G’/G)-expansion method. Opt. Quant. Electron. 2017, 49, 362. [Google Scholar] [CrossRef]
- Lundstrom, B.N.; Higgs, M.H.; Spain, W.J.; Fairhall, A.L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L.; Ovadia, M. Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 2008, 14, 1431–1442. [Google Scholar] [CrossRef]
- Picozzi, S.; West, B.J. Fractional Langevin model of memory in financial markets. Phys. Rev. E 2002, 66, 46–118. [Google Scholar] [CrossRef] [PubMed]
- Rahmatullah; Ellahi, R.; Mohyud-Din, S.T.; Khan, U. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. Results Phys. 2018, 8, 114–120. [Google Scholar] [CrossRef]
- Sohail, A.; Maqbool, K.; Ellahi, R. Stability analysis for fractional-order partial differential equations by means of space spectral time Adams-Bashforth Moulton method. Numer. Methods Partial. Differ. Equ. 2017, 34, 19–29. [Google Scholar] [CrossRef]
- Tripathi, D.; Pandey, S.K.; Das, S. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Appl. Math. Comput. 2010, 215, 3645–3654. [Google Scholar] [CrossRef]
- Duarte-Mermoud, M.A.; Aguila-Camacho, N.; Gallegos, J.A.; Castro-Linares, R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 650–659. [Google Scholar] [CrossRef]
- Chen, L.P.; He, Y.G.; Chai, Y.; Wu, R.C. New results on stability stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynam. 2014, 75, 633–641. [Google Scholar] [CrossRef]
- Wu, G.C.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K.T. Mittag–Leffler stability analysis of fractional discrete–time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Huang, L.L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Huang, T. Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. 2017, 293, 416–422. [Google Scholar] [CrossRef]
- Brzdek, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 2016, 54, 31–35. [Google Scholar] [CrossRef]
- Chen, L.P.; Liu, C.; Wu, R.C.; He, Y.G.; Chai, Y. Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput. Appl. 2016, 27, 549–556. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Zhou, X.F.; Jiang, W. Lyapunov stability analysis of fractional nonlinear systems. Appl. Math. Lett. 2016, 51, 13–19. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, X.F.; Li, X.; Jiang, W. Stability of fractional nonlinear singular systems its applications in synchronization of complex dynamical networks. Nonlinear Dynam. 2016, 84, 2377–2385. [Google Scholar] [CrossRef]
- Ozarslan, M.A.; Ustaoglu, C. Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators. Mathematics 2019, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef] [Green Version]
- Fridman, E. Stability of linear descriptor systems with delays: A Lyapunov-based approach. Aust. J. Math. Anal. Appl. 2002, 273, 24–44. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.M.; Park, J.H.; Lee, S.M. Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays. Appl. Comput. Math. 2009, 207, 202–212. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Guo, S.; Mai, H. Asymptotic stability of delayed neural networks: A descriptor system approach. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3120–3133. [Google Scholar] [CrossRef]
- Park, J.H. Delay-dependent criterion for guaranteed cost control of neutral delay systems. J. Opt. Theory Appl. 2005, 124, 491–502. [Google Scholar] [CrossRef]
- Deng, S.; Liao, X.; Guo, S. Asymptotic stability analysis of certain neutral differential equations: A descriptor system approach. Math. Comput. Simul. 2009, 71, 4297–4308. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, J.H. On improved delay-dependent stability criterion of certain neutral differential equations. Appl. Math. Comput. 2008, 199, 385–391. [Google Scholar] [CrossRef]
- Nam, P.T.; Phat, V.N. An improved stability criterion for a class of neutral differential equations. Appl. Math. Lett. 2009, 22, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Grace, S.R. Asymptotic stability of certain neutral differential equations. Math. Comput. Model. 2000, 31, 9–15. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, O.M. Stability analysis of certain nonlinear differential equation. Chaos Solitons Fractals 2008, 27, 450–453. [Google Scholar] [CrossRef]
- Chen, H. Some improved criteria on exponential stability of neutral differential equation. Adv. Differ. Equ. 2012, 2012, 170. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Meng, X. An improved exponential stability criterion for a class of neutral delayed differential equations. Appl. Math. Lett. 2011, 24, 1763–1767. [Google Scholar] [CrossRef] [Green Version]
- Keadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 2014, 32. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Global exponential stability for a class of neural networks. Appl. Math. Lett. 2009, 22, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhou, S.; Li, H. Asymptotic stability analysis of fractional-order neutral systems with time delay. Adv. Differ. Equ. 2015, 2015, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wu, X.; Zhang, Y.J.; Yang, R. Asymptotical stability of Riemann–Liouville fractional neutral systems. Appl. Math. Lett. 2017, 69, 168–173. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Rojsiraphisal, T.; Niamsup, P. Exponential stability of certain neutral differential equations. Appl. Math. Lett. 2010, 17, 3875–3880. [Google Scholar] [CrossRef]
6.4920 | 4.5076 | 3.3117 | |
4.1166 | 2.8588 | 2.1003 | |
1.3227 | 0.9185 | 0.6748 |
Deng et al. (2009) [25] | 0.889 |
Nam and Phat (2009) [27] | 1.405 |
Chen and Meng (2011) [31] | 1.346 |
Chen (2012) [30] | 1.405 |
Keadnarmol and Rojsiraphisal (2014) [32] | 1.405 |
Corollary 3 | 1.4051 |
Nam and Phat (2009) [27] | 2.32 |
Rojsiraphisal and Niamsup (2010) [38] | 2.32 |
Chen and Meng (2011) [31] | |
Chen (2012) [30] | |
Corollary 3 |
0.2449 | 0.4898 | 0.7348 | 0.9797 | 1.2247 | |
0.2291 | 0.4582 | 0.6873 | 0.9165 | 1.1456 | |
0.2000 | 0.3999 | 0.5999 | 0.7999 | 0.9999 | |
0.1500 | 0.2999 | 0.4499 | 0.5999 | 0.7499 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chartbupapan, W.; Bagdasar, O.; Mukdasai, K. A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. Mathematics 2020, 8, 82. https://doi.org/10.3390/math8010082
Chartbupapan W, Bagdasar O, Mukdasai K. A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. Mathematics. 2020; 8(1):82. https://doi.org/10.3390/math8010082
Chicago/Turabian StyleChartbupapan, Watcharin, Ovidiu Bagdasar, and Kanit Mukdasai. 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation" Mathematics 8, no. 1: 82. https://doi.org/10.3390/math8010082