Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Methodology
- Reciprocity axiom: If element A is n times more significant than element B, then the element B is 1/n times more significant than the element A.
- Homogeneity axiom: Comparison only makes sense if the elements are comparable.
- Dependency axiom: Allows the comparison among the group of criteria of one level with the criteria of a higher level. Comparisons at lower levels depend on the elements of a higher level.
- Axiom of expectations: Any change in the structure of the hierarchy requires recalculating priorities in the new hierarchy.
- Step 1: Step 1 is the same as in the crisp AHP method.
- Step 2: Obtaining the fuzzy comparison matrix.
- Step 3: Examination of matrix consistency.
- Step 4: The fuzzification and the defuzzification processes.
- Step 5: Normalization of weight vector and obtaining the vector for each criterion.
3.2. Indicators
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- James, D. Building Adaptation, 2nd ed.; Heriot-Watt University: Edinburgh, UK, 2006. [Google Scholar]
- Stanojević, A.; Keković, A. Functional and aesthetic transformation of industrial into housing spaces. FU. Arch. Civ. Eng. 2019, 17, 401–416. [Google Scholar]
- Bana e Costa, A.; Oliveira, R.C. Assigning priorities for maintenance, repair and refurbishment in managing a municipal housing stock. Eur. J. Oper. Res. 2002, 138, 380–391. [Google Scholar] [CrossRef]
- Stellacci, S.; Rato, V.; Poletti, E.; Vasconcelos, G.; Borsoi, G. Multi-criteria analysis of rehabilitation techniques for traditional timber frame walls in Pombalino buildings (Lisbon). J. Build. Eng. 2018, 16, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Montesinos-Valera, J.; Aragonés-Beltrán, P.; Pastor-Ferrando, J.-P. Selection of maintenance, renewal and improvement projects in rail lines using the analytic network process. Struct. Infrastruct. Eng. 2017, 13, 1476–1496. [Google Scholar] [CrossRef]
- Hossaini, N.; Reza, B.; Akhtar, S.; Sadiq, R.; Hewage, K. AHP based life cycle sustainability assessment (LCSA) framework: A case study of six storey wood frame and concrete frame buildings in Vancouver. J. Environ. Plan. Manag. 2015, 58, 1217–1241. [Google Scholar] [CrossRef]
- Ucal Sari, I. Development of an integrated discounting strategy based on vendors’ expectations using FAHP and FUZZY goal programming. Technol. Econ. Dev. Econ. 2018, 24, 635–652. [Google Scholar] [CrossRef] [Green Version]
- Pamučar, D.; Petrović, I.; Ćirović, G. Modification of the Best-Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert. Syst. Appl. 2018, 91, 89–106. [Google Scholar] [CrossRef]
- Ghorui, N.; Ghosh, A.; Algehyne, E.A.; Mondal, S.P.; Saha, A.K. AHP-TOPSIS Inspired Shopping Mall Site Selection Problem with Fuzzy Data. Mathematics 2020, 8, 1380. [Google Scholar] [CrossRef]
- Turnšek, B.; Stanojević, A.; Jevremović, L.J. Developing a Model for Sustainable Conversion of Blockhouse Bunkers in Serbia. Tehnički Vjesnik 2020, 27, 1337–1344. [Google Scholar]
- Bollack, F.A. Old Buildings New Forms—New Directions in Architectural Transformations; The Monacelli Press: New York, NY, USA, 2013. [Google Scholar]
- Prascevic, N.; Prascevic, Z. Application of fuzzy AHP for ranking and selection of alternatives in construction project management. J. Civ. Eng. Manag. 2017, 23, 1123–1135. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Antucheviciene, J.; Vilutiene, T.; Adeli, H. Sustainable decision-making in civil engineering, construction and building technology. Sustainability 2018, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Saparauskas, J.; Antucheviciene, J. Sustainability in Construction Engineering. Sustainability 2018, 10, 2236. [Google Scholar] [CrossRef] [Green Version]
- Ogrodnik, K. Multi-Criteria Analysis of Design Solutions in Architecture and Engineering: Review of Applications and a Case Study. Buildings 2019, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM /MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef] [Green Version]
- Bielinskas, V.; Burinskiene, M.; Palevičius, V. Assessment of neglected areas in Vilnius city using MCDM and COPRAS methods. Procedia Eng. 2015, 122, 29–38. [Google Scholar]
- Chen, C.S.; Chiu, Y.H.; Tsai, L. Evaluating the adaptive reuse of historic buildings through multicriteria decision-making. Habitat Int. 2018, 81, 12–23. [Google Scholar] [CrossRef]
- Ribera, F.; Nesticò, A.; Cucco, P.; Maselli, G. A multicriteria approach to identify the Highest and Best Use for historical buildings. J. Cult. Herit. 2019, 41, 166–177. [Google Scholar] [CrossRef]
- Tan, Y.; Shen, L.; Langston, C. A fuzzy approach for adaptive reuse selection of industrial buildings in Hong Kong. Int. J. Strateg. Prop. Manag. 2014, 18, 66–76. [Google Scholar] [CrossRef]
- Morkūnaitė, Ž.; Kalibatas, D.; Kalibatienė, D. A bibliometric data analysis of multi-criteria decision-making methods in heritage buildings. J. Civ. Eng. Manag. 2019, 25, 76–99. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-Criteria Decision Making in Civil Engineering: Part I—A State-of-the-Art Survey. Eng. Struct. Technol. 2016, 7, 103–113. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Kaplinski, O. Multi-criteria decision making in civil engineering. Part II—Applications. Eng. Struct. Technol. 2015, 7, 151–167. [Google Scholar] [CrossRef]
- Zagorskas, J.; Zavadskas, E.K.; Turskis, Z.; Burinskiene, M.; Blumberga, A.; Blumberga, D. Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy Build. 2014, 78, 35–42. [Google Scholar] [CrossRef]
- Kutut, V.; Zavadskas, E.K.; Lazauskas, M. Assessment of priority alternatives for preservation of historic buildings using model based on ARAS and AHP methods. Arch. Civ. Mech. Eng. 2014, 14, 287–294. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K.; Kutut, V. A model based on Aras-G and AHP methods for multiple criteria prioritizing of heritage value. Int. J. Inf. Technol. Decis. Mak. 2013, 12, 45–73. [Google Scholar] [CrossRef]
- Tupenaite, L.; Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Seniut, M. Multiple criteria assessment of alternatives for built and human environment renovation. J. Civ. Eng. Manag. 2010, 16, 257–266. [Google Scholar] [CrossRef]
- Van Balen, K. Preventive conservation of Historic buildings. Restor. Build. Monum. 2015, 21, 99–140. [Google Scholar] [CrossRef]
- Claver, J.; García-Domínguez, A.; Sebastián, M.A. Decision-making methodologies for reuse of industrial assets. Complexity 2018, 2018, 4070496. [Google Scholar] [CrossRef] [Green Version]
- PDR-Plan of Detailed Regulation of the Complex of Electronic Industry Nis; Official Gazette of the City of Nis: Nis, Serbia, No.2; 2014. (In Serbian)
- Jevremović, L.J.; Turnšek, B.; Milojković, A.; Vasić, M.; Jordanović, M. Spontaneous development and resilience places-A case study of Electronic industry Nis (Serbia). In Proceedings of the 3rd International Conference on Places and Technologies, Belgrade, Serbia, 14–15 April 2016; pp. 613–619. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Analytic Network Process—Decision Making with Dependece and Feedback; RWS Publications: Pittsburgh, PA, USA, 1996; ISBN 0-9620317-9-8. [Google Scholar]
- Saaty, T.L. Multicriteria Decision Making—The Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Pamučar, D.; Ćirović, G.; Sekulović, D.; Ilić, A. A new fuzzy mathematical model for multi criteria decision making: An application of fuzzy mathematical model in a SWOT analysis. Sci. Res. Essays 2011, 6, 5374–5386. [Google Scholar]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Jimenez, J.M.; Aguaron, J.; Escobar, M.T. The core of consistency in AHP-group decision making. Group Decis. Negot. 2008, 17, 249–265. [Google Scholar] [CrossRef]
- Milošević, M.; Milošević, D.; Dimić, V.; Stević, D.; Stanojević, A. The analysis of energy efficiency indicators and renewable energy sources for existing buildings. Mkoiee 2017, 5, 205–212. [Google Scholar]
- Li, D.F. An approach to fuzzy multiattribute decision making under uncertainty. Inf. Sci. 2005, 169, 97–112. [Google Scholar] [CrossRef]
- Yager, R.R. Uncertainty modeling using fuzzy measures. Knowl. Based Syst. 2016, 92, 1–8. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 1975, 9, 43–80. [Google Scholar] [CrossRef]
- Lamastra, L.; Balderacchi, M.; Di Guardo, A.; Monchiero, M.; Trevisan, M. A novel fuzzy expert system to assess the sustainability of the viticulture at the wine-estate scale. Middle-East J. Sci. Res. 2014, 22, 1411–1421. [Google Scholar] [CrossRef]
- Chou, J.S.; Pham, A.D.; Wang, H. Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Autom. Constr. 2013, 35, 517–527. [Google Scholar] [CrossRef]
- Dimić, V.; Milošević, M.; Milošević, D.; Stević, D. Adjustable Model of Renewable Energy Projects for Sustainable Development: A Case Study of the Nišava District in Serbia. Sustainability 2018, 10, 775. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.Y. Application of the extent analysis method on fuzzy AHP. Eur. J. Op. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Wang, W.M.; Lee, A.H.I.; Chang, D.T. An integrated FA-FEAHP approach on the social indicators of Taiwan’s green building. Glob. Bus. Econ. Rev. 2009, 11, 304–316. [Google Scholar] [CrossRef]
- Kulak, O.; Durmusoglu, B.; Kahraman, C. Fuzzy multi-attribute equipment selection based on information axiom. J. Mater. Process. Technol. 2005, 169, 337–345. [Google Scholar] [CrossRef]
- Chan, F.T.S.; Kumar, N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 2007, 35, 417–431. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ruan, D. Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. Int. J. Prod. Econ. 2004, 87, 171–184. [Google Scholar] [CrossRef]
- Lee, A.H.I. A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks. Expert Syst. Appl. 2009, 36, 2879–2893. [Google Scholar] [CrossRef]
- Janackovic, G.; Savic, S.; Stankovic, M. Selection and ranking of Occupational Safety Indicators Based on Fuzzy AHP: A Case Study in Road Construction Companies. S. Afr. J. Ind. Eng. 2013, 24, 175–189. [Google Scholar] [CrossRef]
- Domínguez, S.; Carnero, M.C. Fuzzy Multicriteria Modelling of Decision Making in the Renewal of Healthcare Technologies. Mathematics 2020, 8, 944. [Google Scholar] [CrossRef]
- Chou, T.-Y.; Chen, Y.-T. Applying Fuzzy AHP and TOPSIS Method to Identify Key Organizational Capabilities. Mathematics 2020, 8, 836. [Google Scholar] [CrossRef]
- Milošević, D.; Milošević, M.; Stanojević, A.; Dimić, V.; Milošević, A. Application of FAHP Method in the Process of Building Construction from the Aspect of Energy Efficiency. In Proceedings of the 4th International Conference Mechanical Engineering in XXI century, Niš, Serbia, 19–20 April 2018; pp. 271–276. [Google Scholar]
- Srdjevic, B.; Medeiros, Y. Fuzzy AHP assessment of water management plans. Water Resour. Manag. 2008, 22, 877–894. [Google Scholar] [CrossRef]
- Carnero, M.C. Fuzzy Multicriteria Models for Decision Making in Gamification. Mathematics 2020, 8, 682. [Google Scholar] [CrossRef]
- Milošević, D.; Stanojević, A.; Milošević, M. AHP method in the function of logistic in development of smart cities model. In Proceedings of the 6th International Conference: Transport and logistic Til, Niš, Serbia, 25–26 May 2017; pp. 287–294. [Google Scholar]
- Liou, T.S.; Wang, M.J. Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 1992, 50, 247–256. [Google Scholar] [CrossRef]
- Milošević, M.; Milošević, D.; Stanojević, A. Managing Cultural Built Heritage in Smart Cities Using Fuzzy and Interval Multi-criteria Decision Making. In Intelligent and Fuzzy Techniques: Smart and Innovative Solutions; INFUS 2020. Advances in Intelligent Systems and Computing, vol 1197; Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I., Cebi, S., Tolga, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Milošević, A.; Milošević, M.; Milošević, D.; Selimi, A. Ahp multi—Criteria method for sustainable development in construction. In Proceedings of the 4th International Conference, Contemporary Achievements in Civil Engineering, Subotica, Serbia, 22 April 2016; pp. 929–938. [Google Scholar]
- Selimi, A.; Milošević, M.; Saračević, M. AHP—TOPSIS Model as a Mathematical Support in the Selection of Project from Aspect of Mobility—Case Study. J. Appl. Math. Comput. (JAMC) 2018, 2, 257–265. [Google Scholar]
- Milošević, M.; Dimić, V. Multi-criteria analysis in ICT implementation for Smart Cities. In Proceedings of the Conference Successful Implementation of Information Technology: IT, Marketing, Education and Business Working Together for Business Success, EEE 2018, Belgrade, Serbia, 18–20 October 2018; pp. 83–105. [Google Scholar]
- Wilczkiewicz, M.; Wilkosz-Mamcarczyk, M. Revitalization—Definition, genesis, examples. Geomat. Landmanagement Landsc. 2015, 2, 71–79. [Google Scholar] [CrossRef]
- Bullen, P.; Love, P. A new future for the past: A model for adaptive reuse decision-making. Built Environ. Proj. Asset Manag. 2011, 1, 32–44. [Google Scholar] [CrossRef]
- Sharpe, S.E. Revitalizing Cities: Adaptive Reuse of Historic Structures. In Proceedings of the Mid-America College Art Association Conference, Detroit, MI, USA, 3–6 October 2012; Digital Publications: Dhaka, Bangladesh, 2012; p. 18. [Google Scholar]
- Douglas, J. Buildings Adaptation; Heriot-Watt University: Edinburgh, Scotland, 2006. [Google Scholar]
- Eray, E.; Sanchez, B.; Haas, C. Usage of Interface Management System in Adaptive Reuse of Buildings. Buildings 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Stanojević, A.; Jevremović, L.j.; Milošević, M.; Turnšek, B.; Milošević, D. Identifying priority indicators for reuse of industrial buildings using AHP method—Case study of Electronic Industry in Nis, Serbia. In Proceedings of the 6th International Academic Conference on Places and Technologies, Pecs, Hungary, 9–10 May 2019; pp. 555–563. [Google Scholar]
- Liewelyn, D. Urban Design Compendium; English Partnerships and The Housing Corporation: London, UK, 2000.
- Stratton, M. Industrial Buildings—Conservation and Regeneration; Taylor & Francis e-Library: London, UK, 2005. [Google Scholar]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Hoxha, E.; Habert, G.; Lasvaux, S.; Chevalier, J.; Le Roy, R. Influence of construction material uncertainties on residential building LCA reliability. J. Clean. Prod. 2017, 144, 33–47. [Google Scholar] [CrossRef]
- Tulevech, S.M.; Hage, D.J.; Jorgensen, S.K.; Guensler, C.L.; Himmler, R.; Gheewala, S.H. Life cycle assessment: A multi-scenario case study of a low-energy industrial building in Thailand. Energy Build. 2018, 168, 191–200. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, T.-C.T. A Partial-Consensus Posterior-Aggregation FAHP Method—Supplier Selection Problem as an Example. Mathematics 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Comput. Environ. Urban. Syst. 2015, 49, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, F.J.; Ureña, R.; Pedrycz, W.; Herrera-Viedma, E. Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets Syst. 2014, 255, 115–127. [Google Scholar] [CrossRef]
- Lombera, J.T.S.; Rojo, J.C. Industrial building design stage based on a system approach to their environmental sustainability. Constr. Build. Mater. 2010, 24, 438–447. [Google Scholar] [CrossRef]
- Kaya, İ.; Kahraman, C. A comparison of fuzzy multi criteria decision making methods for intelligent building assessment. J. Civ. Eng. Manag. 2014, 20, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Hatefi, S.M. Intelligent building assessment based on an integrated model of fuzzy analytic hierarchy process and fuzzy preference degree approach (FAHP-FPDA). Int. J. Optim. Civ. Eng. 2019, 79–92. [Google Scholar]
- Wong, J.K.W.; Li, H. Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Build Environ. 2008, 43, 108–125. [Google Scholar] [CrossRef]
- Milošević, M.R.; Milošević, D.M.; Stević, D.M.; Stanojević, A.D. Smart City: Modeling Key Indicators in Serbia Using IT2FS. Sustainability 2019, 11, 3536. [Google Scholar] [CrossRef] [Green Version]
- Stanujkic, D.; Đorđević, B.; Đorđević, M. Comparative analysis of some prominent mcdm methods: A case of ranking Serbian banks. Serbian J. Manag. 2013, 8, 213–241. [Google Scholar] [CrossRef] [Green Version]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Operators | Mathematical Expression | Results |
---|---|---|
Addition | ||
Scalar multiplication | ||
Multiplication | ||
Inverse |
Denotation TFNs | TFNs | Denotation Inverse TFNs | Inverse TFNs |
---|---|---|---|
(1, 1, 3) | −1 | (1/3, 1, 1) | |
(1, 2, 3) | −1 | (1/3, 1/2, 1) | |
(1, 3, 5) | −1 | (1/5, 1/3, 1) | |
(3, 4, 5) | −1 | (1/5, 1/4, 1/3) | |
(3, 5, 7) | −1 | (1/7, 1/5, 1/3) | |
(5, 6, 7) | −1 | (1/7, 1/6, 1/5) | |
(5, 7, 9) | −1 | (1/9, 1/7, 1/5) | |
(7, 8, 9) | −1 | (1/9, 1/8, 1/7) | |
(7, 9, 9) | −1 | (1/9, 1/9, 1/7) |
FAHP Scale | Linguistic Statement | Explanation |
---|---|---|
Equal importance | Two activities contribute equally to the objective | |
Weak Importance of one over another | Experience and judgment slightly favor one activity over another | |
Essential or strong importance | Experience and judgment strongly favor one activity over another | |
Very strong importance | Activity is strongly favored and its dominance demonstrated in practice | |
Absolute importance | The evidence favoring one activity over another is of the highest possible order or affirmation | |
Intermediate values between the two adjacent judgments | When compromise is needed |
PHYSICAL INDICATORS (X) | |
X1—Spatial-dimensional | |
X11—Building floor height
| New purposes demand new requirements concerning the minimal floor height. The floor height indicates that the existing space in the vertical plane could be divided. |
| The upper floors of high-rise buildings have limited connectivity with the surrounding for various purposes, making low-rise buildings more appropriate for conversion. |
| The constructive span determines the dimensions of obstacle-free interior space. This paper defines three specific spans of industrial buildings, important for the potential adjustment of interior spaces. |
| There is a direct correlation between the cross depth of the facilities and the potential for natural lighting and ventilation. It is more difficult to convert high-dept buildings, while the other ones, with small-depths, have narrow free interior space for reuse [72]. |
| From all building sizes, the most suitable ones are those in the range of 1000–4500 m2. Extreme dimensions, the smallest, and the largest ones are inadequate for conversion [73]. |
| We consider the characteristics of a redevelopment building in terms of its position in space relative to neighborhood buildings. Including all possible scenarios, self-standing buildings have the highest potential for adaptive reuse. |
X2—Physical structures quality | |
| The supporting elements of linear constructive systems do not create significant spatial obstacles as constraints in the conversion process, and therefore these systems have the advantage. [74]. |
| We define this criterion by dividing the total range of the value of the observed parameter into three parts. |
| The criterion has defined based on the qualitative properties of the envelope structure. The range of values has derived from known materials used in the construction of industrial facilities [75,76]. |
| Aesthetic values are primary in this criterion. Buildings with high aesthetic values, by positive social acceptance, and appreciation, and with a strong identity, may have the advantage. |
SITE INDICATORS (Y) | |
Y1—Distance from the road
| The optimum distance from a high traffic road indicates good traffic connections and easy accessibility to the building. It should take into account the negative aspects of short distances, such as noise and pollution. |
Y2—Corresponding free area
| The best possibility in the spot is when the occupancy level does not exceed 60% of the total area of the plot. The high occupancy level indicates the small free area for facilitating parking space, pedestrian space, and greenery [73]. |
Y3—Distance from adjacent buildings
| The relation between the heights of the buildings is the essence of this criterion. Contributing with more solar power and better eyesight, higher buildings are more desirable. |
Y4—Number of access
| The number of access points and evacuation gates determine the different purposes building adaptability degree. |
X | Y | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|
X | 0.75 | 0.739796 | 0.714286 | ||
Y | −1 | 0.25 | 0.260204 | 0.285714 |
X1 | X2 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|
X1 | 0.810638 | 0.800928 | 0.787234 | ||
X2 | −1 | 0.189362 | 0.199072 | 0.212766 |
Y4 | Y1 | Y2 | Y3 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|
Y4 | 0.439801 | 0.439298 | 0.438408 | ||||
Y1 | −1 | 0.337632 | 0.333511 | 0.326212 | |||
Y2 | −1 | −1 | 0.177805 | 0.179049 | 0.181252 | ||
Y3 | −1 | −1 | −1 | 0.0447618 | 0.0481418 | 0.0541281 |
X15 | X11 | X12 | X16 | X14 | X13 | |
---|---|---|---|---|---|---|
X15 | ||||||
X11 | −1 | |||||
X12 | −1 | −1 | ||||
X16 | −1 | −1 | −1 | |||
X14 | −1 | −1 | −1 | −1 | ||
X13 | −1 | −1 | −1 | −1 | −1 |
λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|
X15 | 0.326206 | 0.333333 | 0.349591 |
X11 | 0.251322 | 0.250955 | 0.250118 |
X12 | 0.180591 | 0.178855 | 0.174893 |
X16 | 0.124978 | 0.120443 | 0.110092 |
X14 | 0.0740976 | 0.0732968 | 0.0714688 |
X13 | 0.0428056 | 0.0431201 | 0.0438381 |
X21 | X23 | X22 | X24 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|
X21 | 0.487733 | 0.495091 | 0.512857 | ||||
X23 | −1 | 0.302497 | 0.298662 | 0.289403 | |||
X22 | −1 | −1 | 0.15515 | 0.150053 | 0.137748 | ||
X24 | −1 | −1 | −1 | 0.0546197 | 0.0561933 | 0.0599926 |
Y12 | Y11 | Y13 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
Y12 | 0.601249 | 0.594416 | 0.582686 | |||
Y11 | −1 | 0.322622 | 0.323299 | 0.324461 | ||
Y13 | −1 | −1 | 0.0761286 | 0.0822846 | 0.0928532 |
Y22 | Y23 | Y21 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
Y22 | 0.702088 | 0.70579 | 0.712107 | |||
Y23 | −1 | 0.196984 | 0.191583 | 0.182366 | ||
Y21 | −1 | −1 | 0.100928 | 0.102627 | 0.105527 |
Y33 | Y32 | Y31 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
Y33 | 0.505146 | 0.518692 | 0.547127 | |||
Y32 | −1 | 0.369599 | 0.35333 | 0.319177 | ||
Y31 | −1 | −1 | 0.125255 | 0.127978 | 0.133695 |
Y42 | Y43 | Y41 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
Y42 | 0.505146 | 0.518692 | 0.547127 | |||
Y43 | −1 | 0.369599 | 0.35333 | 0.319177 | ||
Y41 | −1 | −1 | 0.125255 | 0.127978 | 0.133695 |
X112 | X113 | X111 | X114 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|
X112 | 0.487733 | 0.495091 | 0.512857 | ||||
X113 | −1 | 0.302497 | 0.298662 | 0.289403 | |||
X111 | −1 | −1 | 0.15515 | 0.150053 | 0.137748 | ||
X114 | −1 | −1 | −1 | 0.0546197 | 0.0561933 | 0.0599926 |
X122 | X121 | X123 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
X122 | 0.505146 | 0.518692 | 0.547127 | |||
X121 | −1 | 0.369599 | 0.35333 | 0.319177 | ||
X123 | −1 | −1 | 0.125255 | 0.127978 | 0.133695 |
X131 | X132 | X133 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
X131 | 0.601249 | 0.594416 | 0.582686 | |||
X132 | −1 | 0.322622 | 0.323299 | 0.324461 | ||
X133 | −1 | −1 | 0.0761286 | 0.0822846 | 0.0928532 |
X142 | X141 | X143 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
X142 | 0.550805 | 0.537017 | 0.511619 | |||
X141 | −1 | 0.360141 | 0.367572 | 0.381261 | ||
X143 | −1 | −1 | 0.0890539 | 0.0954105 | 0.10712 |
X152 | X153 | X151 | X154 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|
X152 | 0.451062 | 0.44989 | 0.447971 | ||||
X153 | −1 | 0.357641 | 0.354513 | 0.349394 | |||
X151 | −1 | −1 | 0.151602 | 0.153332 | 0.156165 | ||
X154 | −1 | −1 | −1 | 0.0396952 | 0.042265 | 0.0464702 |
X161 | X162 | X164 | X163 | X165 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|---|
X161 | 0.413656 | 0.420983 | 0.434561 | |||||
X162 | −1 | 0.286621 | 0.281378 | 0.271662 | ||||
X164 | −1 | −1 | 0.165352 | 0.15933 | 0.148171 | |||
X163 | −1 | −1 | −1 | 0.105448 | 0.107575 | 0.111516 | ||
X165 | −1 | −1 | −1 | −1 | 0.0289223 | 0.0307332 | 0.0340893 |
X211 | X212 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|
X211 | 0.848684 | 0.836219 | 0.813596 | ||
X212 | −1 | 0.151316 | 0.163781 | 0.186404 |
X222 | X223 | X221 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
X222 | 0.651202 | 0.644745 | 0.634569 | |||
X223 | −1 | 0.27877 | 0.281051 | 0.284647 | ||
X221 | −1 | −1 | 0.0700282 | 0.074204 | 0.0807844 |
X231 | X234 | X233 | X232 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|---|
X231 | 0.484025 | 0.486921 | 0.491541 | ||||
X234 | −1 | 0.337062 | 0.330705 | 0.320564 | |||
X233 | −1 | −1 | 0.141467 | 0.142755 | 0.14481 | ||
X232 | −1 | −1 | −1 | 0.0374457 | 0.0396189 | 0.0430859 |
X241 | X242 | X243 | λ = 1 | λ = 0.5 | λ = 0 | |
---|---|---|---|---|---|---|
X241 | 0.601249 | 0.594416 | 0.582686 | |||
X242 | −1 | 0.322622 | 0.323299 | 0.324461 | ||
X243 | −1 | −1 | 0.0761286 | 0.0822846 | 0.0928532 |
Indicators | λ = 0 | λ = 0.5 | λ = 1 |
---|---|---|---|
X111 | 0.0194 | 0.0223 | 0.0237 |
X112 | 0.0721 | 0.0736 | 0.0745 |
X113 | 0.0407 | 0.0444 | 0.0462 |
X114 | 0.0084 | 0.0084 | 0.0083 |
X121 | 0.0314 | 0.0374 | 0.0406 |
X122 | 0.0538 | 0.0550 | 0.0555 |
X123 | 0.0131 | 0.0136 | 0.0138 |
X131 | 0.0144 | 0.0152 | 0.0156 |
X132 | 0.0080 | 0.0083 | 0.0084 |
X133 | 0.0023 | 0.0021 | 0.0020 |
X141 | 0.0153 | 0.0160 | 0.0162 |
X142 | 0.0206 | 0.0233 | 0.0248 |
X143 | 0.0043 | 0.0041 | 0.0040 |
X151 | 0.0307 | 0.0303 | 0.0301 |
X152 | 0.0881 | 0.0889 | 0.0895 |
X153 | 0.0687 | 0.0700 | 0.0709 |
X154 | 0.0091 | 0.0083 | 0.0079 |
X161 | 0.0269 | 0.0300 | 0.0314 |
X162 | 0.0168 | 0.0201 | 0.0218 |
X163 | 0.0069 | 0.0077 | 0.0080 |
X164 | 0.0092 | 0.0114 | 0.0126 |
X165 | 0.0021 | 0.0022 | 0.0022 |
X211 | 0.0634 | 0.0610 | 0.0588 |
X212 | 0.0145 | 0.0119 | 0.0105 |
X221 | 0.0017 | 0.0016 | 0.0015 |
X222 | 0.0133 | 0.0142 | 0.0143 |
X223 | 0.0060 | 0.0062 | 0.0061 |
X231 | 0.0216 | 0.0214 | 0.0208 |
X232 | 0.0019 | 0.0017 | 0.0016 |
X233 | 0.0064 | 0.0063 | 0.0061 |
X234 | 0.0141 | 0.0145 | 0.0145 |
X241 | 0.0053 | 0.0049 | 0.0047 |
X242 | 0.0030 | 0.0027 | 0.0025 |
X243 | 0.0008 | 0.0007 | 0.0006 |
Y11 | 0.0302 | 0.0281 | 0.0272 |
Y12 | 0.0543 | 0.0516 | 0.0508 |
Y13 | 0.0087 | 0.0071 | 0.0064 |
Y21 | 0.0055 | 0.0048 | 0.0045 |
Y22 | 0.0369 | 0.0329 | 0.0312 |
Y23 | 0.0094 | 0.0089 | 0.0088 |
Y31 | 0.0021 | 0.0016 | 0.0014 |
Y32 | 0.0049 | 0.0044 | 0.0041 |
Y33 | 0.0085 | 0.0065 | 0.0057 |
Y41 | 0.0167 | 0.0146 | 0.0138 |
Y42 | 0.0685 | 0.0593 | 0.0555 |
Y43 | 0.0400 | 0.0404 | 0.0406 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X111 | √ | x | √ | √ | x | √ | x | x | x | x | x | x | √ | x | √ | √ | √ | x | √ |
X112 | x | √ | x | x | x | x | √ | √ | √ | √ | √ | √ | x | x | x | x | x | x | x |
X113 | x | x | x | x | √ | x | x | x | x | x | x | x | x | √ | x | x | x | √ | x |
X114 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X121 | x | x | x | x | √ | x | x | x | x | √ | x | √ | x | √ | x | x | x | x | x |
X122 | √ | √ | √ | √ | x | x | x | x | √ | x | √ | x | x | x | √ | √ | √ | √ | x |
X123 | x | x | x | x | x | √ | √ | √ | x | x | x | x | √ | x | x | x | x | x | √ |
X131 | √ | x | x | √ | √ | √ | x | √ | x | √ | √ | x | √ | x | √ | √ | √ | √ | √ |
X132 | x | √ | √ | x | x | x | x | x | √ | x | x | √ | x | √ | x | x | x | x | x |
X133 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X141 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X142 | √ | x | x | x | √ | x | x | √ | x | √ | √ | x | √ | x | √ | √ | √ | x | √ |
X143 | x | √ | √ | √ | x | √ | √ | x | √ | x | x | √ | x | √ | x | x | x | √ | x |
X151 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X152 | √ | x | √ | √ | √ | √ | x | x | x | √ | x | x | x | √ | √ | x | x | x | x |
X153 | x | x | x | x | x | x | √ | x | √ | x | √ | x | √ | x | x | √ | √ | x | √ |
X154 | x | √ | x | x | x | x | x | √ | x | x | x | √ | x | x | x | x | x | √ | x |
X161 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | x | x | x | √ | √ | x | √ | √ |
X162 | x | x | x | x | x | x | x | x | x | x | x | x | x | √ | x | x | √ | x | x |
X163 | x | x | x | x | x | x | x | x | x | x | x | √ | x | x | x | x | x | x | x |
X164 | x | x | x | x | x | x | x | x | x | x | x | x | √ | x | x | x | x | x | x |
X165 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X211 | √ | √ | √ | √ | √ | √ | √ | √ | √ | x | √ | x | √ | √ | √ | √ | √ | √ | √ |
X212 | x | x | x | x | x | x | x | x | x | √ | x | √ | x | x | x | x | x | x | x |
X221 | x | x | x | x | x | x | √ | x | x | x | x | x | x | x | x | x | x | x | x |
X222 | √ | √ | √ | √ | x | x | x | √ | √ | √ | x | x | √ | √ | √ | x | √ | √ | √ |
X223 | x | x | x | x | √ | √ | x | x | x | x | √ | √ | x | x | x | √ | x | x | x |
X231 | x | x | √ | √ | √ | x | x | √ | √ | √ | √ | √ | √ | x | √ | x | √ | x | √ |
X232 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
X233 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | √ | x |
X234 | √ | √ | x | x | x | √ | √ | x | x | x | x | x | x | √ | x | √ | x | x | x |
X241 | x | x | x | √ | x | x | √ | √ | x | x | x | x | x | x | x | x | x | x | x |
X242 | √ | √ | x | x | √ | √ | x | x | √ | √ | √ | √ | x | x | √ | √ | √ | x | √ |
X243 | x | x | √ | x | x | x | x | x | x | x | x | x | √ | √ | x | x | x | √ | x |
Y11 | x | x | x | x | x | √ | x | x | x | x | x | x | x | x | x | x | x | x | x |
Y12 | √ | √ | √ | √ | √ | x | x | x | x | x | x | x | x | x | x | √ | x | x | √ |
Y13 | x | x | x | x | x | x | √ | √ | √ | √ | √ | √ | √ | √ | √ | x | √ | √ | x |
Y21 | x | √ | √ | x | x | x | x | x | √ | √ | x | √ | √ | √ | x | x | √ | √ | x |
Y22 | x | x | x | √ | √ | √ | x | x | x | x | x | x | x | x | √ | x | x | x | x |
Y23 | √ | x | x | x | x | x | √ | √ | x | x | √ | x | x | x | x | √ | x | x | √ |
Y31 | x | x | x | √ | x | √ | √ | √ | √ | √ | x | √ | √ | x | x | x | √ | √ | x |
Y32 | x | x | x | x | √ | x | x | x | x | x | √ | x | x | x | x | x | x | x | x |
Y33 | √ | √ | √ | x | x | x | x | x | x | x | x | x | x | √ | √ | √ | x | x | √ |
Y41 | x | x | x | √ | x | x | x | x | x | x | x | √ | √ | √ | √ | x | x | x | √ |
Y42 | √ | x | x | x | x | x | x | x | √ | x | x | x | x | x | x | √ | √ | x | x |
Y43 | x | √ | √ | x | √ | √ | √ | √ | x | √ | √ | x | x | x | x | x | x | √ | x |
Buildings | Final Weight | Buildings | Final Weight | Buildings | Final Weight |
---|---|---|---|---|---|
A | 0.4577 | E | 0.4598 | E | 0.4630 |
E | 0.4522 | A | 0.4534 | A | 0.4514 |
P | 0.4310 | P | 0.4265 | P | 0.4246 |
D | 0.4205 | K | 0.4192 | K | 0.4208 |
I | 0.4199 | D | 0.4177 | D | 0.4155 |
K | 0.4135 | I | 0.4131 | I | 0.4089 |
C | 0.4079 | C | 0.4092 | C | 0.4086 |
O | 0.3953 | O | 0.3951 | O | 0.3940 |
Q | 0.3798 | Q | 0.3780 | J | 0.3774 |
B | 0.3763 | B | 0.3750 | Q | 0.3765 |
J | 0.3622 | J | 0.3725 | B | 0.3734 |
F | 0.3619 | F | 0.3615 | F | 0.3603 |
R | 0.3533 | S | 0.3553 | S | 0.3557 |
G | 0.3442 | G | 0.3465 | G | 0.3469 |
N | 0.3203 | N | 0.3266 | N | 0.3291 |
H | 0.3200 | H | 0.3235 | H | 0.3238 |
S | 0.2894 | R | 0.2931 | R | 0.2933 |
M | 0.2775 | M | 0.2812 | M | 0.2820 |
L | 0.2099 | L | 0.2097 | L | 0.2094 |
Value of Increasing for Y | Change of Position for λ = 0 | Change of Position for λ = 0.5 | Change of Position for λ = 1 |
---|---|---|---|
0.01 | J falls from 11. to 12. | ||
0.02 | N falls from 15. to 16. | ||
0.03 | D jumps from 5. to 4. | ||
0.04 | S falls from 12. to 13. | ||
0.05 | J falls from 9. to 11. | ||
0.06 | F falls from 12. to 11. | F falls from 12. to 13. | |
0.07 | |||
0.08 | |||
0.09 | S falls from 13. to 14. | J falls from 11. to 13. | |
N falls from 15. to 16. | |||
0.10 | S falls from 13. to 14. | D jumps from 4. to 3. | |
0.11 | D jumps from 4. to 3. | D jumps from 4. to 3. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milošević, D.M.; Milošević, M.R.; Simjanović, D.J. Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings. Mathematics 2020, 8, 1697. https://doi.org/10.3390/math8101697
Milošević DM, Milošević MR, Simjanović DJ. Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings. Mathematics. 2020; 8(10):1697. https://doi.org/10.3390/math8101697
Chicago/Turabian StyleMilošević, Dušan M., Mimica R. Milošević, and Dušan J. Simjanović. 2020. "Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings" Mathematics 8, no. 10: 1697. https://doi.org/10.3390/math8101697