A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition
Abstract
:1. Introduction
2. A Variational Vademecum for a Dynamic Obstacle Robotic Problem
2.1. Potential Flow Theory for a Dynamic Obstacle Robotic Problem
2.2. Introducing the Variational Vademecum
3. A Progressive Construction of a Variational Vademecum
- (a)
- is dense in
- (b)
- It is a cone, that is, if then for all
- (c)
- It is a weakly closed set in
- (A1)
- J is Fréchet differentiable, with Fréchet differential ;
- (A2)
- J is elliptic;
- (A3)
- is Lipschitz continuous on bounded sets.
- Consider two finite dimensional subspaces and
- Assume that for each the approximation is known.
- Choose the function randomly and let be a linear subspace such that Find be such that
- Let be a linear subspace such that Find be such that
- Repeat steps 3 and 4 just until is stabilized. Take
- If then return Otherwise put and go to step 2.
4. Navigation Example
- Evaluate the abacus at the point i defined by the current configuration given by the parameters . This evaluation will give the solution of the Laplace’s equation for any position of the domain and for the current set of parameters: .
- Evaluate the gradient of the solution in order to define the streamline.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reif, J.H. Complexity of the Mover’s Problem and Generalizations. In Proceedings of the IEEE ymposium on Foundations of Computer Science, San Juan, PR, USA, 29–31 October 1976; pp. 421–427. [Google Scholar]
- González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Ntelligent Transp. Syst. 2016, 17, 1135–1145. [Google Scholar] [CrossRef]
- Kavraki, L.E.; LaValle, S. Chapter 5. Motion Planning; Khatib, S., Ed.; Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Rimon, E.; Koditschek, D. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 1992, 8, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Zhachmanoglou, E.; Thoe, D.W. Introduction to Partial Differential Equations with Applications; Dover Publications, Inc.: New York, NY, USA, 1986. [Google Scholar]
- Kim, J.; Khosla, P. Real-time obstacle avoidance using harmonic potencial functions. IEEE Trans. Robot. Autom. 1992, 8, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Connolly, C.I.; Grupen, R. The Application of Harmonic functions to Robotics. J. Robot. Syst. 1993, 10, 931–946. [Google Scholar] [CrossRef] [Green Version]
- Canny, J.F. The Complexity of Robot Motion Planning; MIT Press: Cambridge, UK, 1988. [Google Scholar]
- Garrido, S.; Moreno, L.; Blanco, D.; Martín, M.F. Robotic Motion Using Harmonic Functions and Finite Elements. J. Intell. Robot Syst. 2010, 59, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Connolly, C.I.; Burns, J.B.; Weiss, R. Path planning using Laplace’s equation. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 2102–2106. [Google Scholar]
- Saudi, A.; Sulaiman, J. Path Planing for mobile robots using 4EGSOR via Nine-Point Laplacian (4EGSOR9L) Iterative method. Int. J. Comput. Appl. 2012, 53, 38–42. [Google Scholar]
- Saudi, A.; Sulaiman, J.; Ahmad, H.M.H. Robot Path Planing with EGSOR Iterative Method using Laplacian Behaviour-Based Control (LBBC). In Proceedings of the 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, 27–29 January 2014; pp. 87–91. [Google Scholar]
- Yan, W.; Bai, X.; Peng, X.; Zuo, L.; Dai, J. The routing problem of autonomous underwater vehicles in ocean currents. In Proceedings of the MTS/IEEE Conference OCEANS’14, Taipei, Taiwan, 7–10 April 2014; pp. 1–6. [Google Scholar]
- Bai, X.; Yan, W.; Cao, M.; Xue, D. Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles. IET Control Theory Appl. 2019, 13, 2886–2893. [Google Scholar] [CrossRef]
- Bai, X.; Yan, W.; Ge, S.S.; Cao, M. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Inf. Sci. 2018, 453, 227–238. [Google Scholar] [CrossRef]
- Falcó, A.; Nouy, A. Proper Generalized Decomposition for Nonlinear Convex Problems in Tensor Banach Spaces. Numer. Math. 2012, 121, 503–530. [Google Scholar] [CrossRef] [Green Version]
- Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J.V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A. PGD-Based computational vademecum for efficient Design, Optimization and Control. Arch. Comput. Methods Eng. 2013, 20, 31–49. [Google Scholar] [CrossRef]
- Chinesta, F.; Keunings, R.; Leygue, A. The Proper Generalized Decomposition for Advanced Numerical Simulations. A Primer; Springer Briefs in Applied Science and Technology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Falcó, A.; Montés, N.; Chinesta, F.; Hilario, L.; Mora, M.C. On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. J. Comput. Appl. Math. 2018, 330, 1093–1107. [Google Scholar] [CrossRef]
- Montés, N.; Chinesta, F.; Falcó, A.; Mora, M.C.; Hilario, L.; Rosillo, N. PGD-based Method for mobile robot applications. In Proceedings of the Congress on Numerical Methods in Engineering CMN2017, Valencia, Spain, 3–5 July 2017. [Google Scholar]
- Montés, N.; Chinesta, F.; Falcó, A.; Mora, M.C.; Hilario, L.; Nadal, E.; Duval, J.L. A PGD- based Method for Robot Global Path Planning: A Primer. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), Prague, Czech Republic, 29–31 July 2019; pp. 31–39. [Google Scholar]
- Domenech, L.; Falcó, A.; García, V.; Sánchez, F. Towards a 2.5D geometric model in mold filling simulation. J. Comput. Appl. Math. 2016, 291, 183–196. [Google Scholar] [CrossRef]
- Falcó, A.; Nouy, A. A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J. Math. Anal. Appl. 2011, 376, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Gingras, D.; Dupuis, E.; Payre, G.; Lafontaine, J. Path Planning Based on Fluid mechanics for mobile robots used Unstructured Terrain models. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010. [Google Scholar]
- Cancès, E.; Ehrlacher, V.; Lelièvre, T. Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Mathematical Models and Methods. Appl. Sci. 2011, 21, 2433–2467. [Google Scholar]
- Falcó, A.; Hackbusch, W. On minimal subspaces in tensor representations. Found. Comput. Math. 2012, 12, 765–803. [Google Scholar] [CrossRef] [Green Version]
- Canuto, C.; Urban, K. Adaptive optimization of convex functionals in banach spaces. SIAM J. Numer. Anal. 2005, 42, 2043–2075. [Google Scholar] [CrossRef]
- Ammar, A.; Chinesta, F.; Falcó, A. On the convergence of a Greedy Rank-One Update Algorithm for a class of Linear Systems. Arch. Comput. Methods Eng. 2010, 17, 473–486. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcó, A.; Hilario, L.; Montés, N.; Mora, M.C.; Nadal, E. A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics 2020, 8, 2245. https://doi.org/10.3390/math8122245
Falcó A, Hilario L, Montés N, Mora MC, Nadal E. A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics. 2020; 8(12):2245. https://doi.org/10.3390/math8122245
Chicago/Turabian StyleFalcó, Antonio, Lucía Hilario, Nicolás Montés, Marta C. Mora, and Enrique Nadal. 2020. "A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition" Mathematics 8, no. 12: 2245. https://doi.org/10.3390/math8122245
APA StyleFalcó, A., Hilario, L., Montés, N., Mora, M. C., & Nadal, E. (2020). A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics, 8(12), 2245. https://doi.org/10.3390/math8122245