A Discussion on Random Meir-Keeler Contractions
Abstract
:1. Introduction and Preliminaries
- (1)
- for all, where we denote;
- (2)
- if and only if, for all;
- (3)
- ;
- (4)
- for all, and let υ be a selector;
- (5)
- for any,,is nonincreasing and left continuous.
- (a)
- ψ is anfunction.
- (b)
- For any non-increasing sequencein, we have
2. Main Results
- (1)
- is a non-decreasing, continuous function in each coordinate;
- (2)
- for all , , and ;
- (3)
- if and only if .
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spacek, A. Zufallige Gleichungen. Czechoslov. Math. J. 1955, 5, 462–466. [Google Scholar]
- Hans, O. Reduzierende zufallige Transformationen. Czechoslov. Math. J. 1956, 7, 154–158. [Google Scholar]
- Hans, O. Random fixed point theorem. In Proceedings of the 1st Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, Czech, 28–30 November 1956; pp. 105–125. [Google Scholar]
- Bharucha-Reid, A.T. Fixed point theorems in probabilistic analysis. Bull. Am. Math. Soc. 1976, 82, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.K. Some random fixed point theorems for condensing and nonexpansive operators. Proc. Am. Math. Soc. 1990, 110, 395–400. [Google Scholar] [CrossRef]
- Sehgal, V.M.; Waters, C. Some random fixed point theorems for condensing operators. Proc. Am. Math. Soc. 1984, 93, 425–429. [Google Scholar] [CrossRef]
- Sehgal, V.M.; Singh, S.P. On random approximations and a random fixed point theorem for set-valued mappings. Proc. Am. Math. Soc. 1985, 95, 91–94. [Google Scholar] [CrossRef]
- Beg, I.; Shahzad, N. Applications of the proximity map to random fixed point theorems in Hilbert spaces. J. Math. Anal. Appl. 1995, 196, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.-K.; Yuan, X.-Z. Random fixed point theorems and approximation. Stoch. Anal. Appl. 1997, 15, 103–123. [Google Scholar] [CrossRef]
- Itoh, S. Random fixed-point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 1979, 67, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.C. Random approximations and random fixed point theorems for continuous 1-set-contractive random maps. Proc. Am. Math. Soc. 1995, 123, 1167–1176. [Google Scholar]
- Lin, T.C. Random approximations and random fixed point theorems for nonself maps. Proc. Am. Math. Soc. 1988, 103, 1129–1135. [Google Scholar] [CrossRef]
- Papageorgiou, N.S. Random fixed point theorems for measurable multifunctions in Banach spaces. Soc. Proc. Am. Math. Soc. 1986, 97, 507–514. [Google Scholar] [CrossRef]
- Lorenzo Ramirez, P. Some random fixed point theorems for nonlinear mappings. Nonlinear Anal. 2002, 50, 265–274. [Google Scholar] [CrossRef]
- Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Chang, T.H. Fixed Point Theorems for a Weaker Meir-Keeler Type ψ-Set Contraction in Metric Spaces. Fixed Point Theory Appl. 2009, 2009, 129124. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, U.E.K.; Erhan, I.M.; Rakocevic, V. Meir-Keeler Type Contractions on Modular Metric Spaces. Filomat 2018, 32, 3697–3707. [Google Scholar] [CrossRef]
- Chen, C.-M.; O’regan, E.K.D. On (α−ϕ)-Meir-Keeler contractions on partial Hausdorff metric spaces. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 101–110. [Google Scholar]
- Gulyaz, S.; Erhan, I.; Karapinar, E. Generalized α-Meir-Keeler Contraction Mapping on Branciari b-metric Spaces. Filomat 2017, 31, 5445–5456. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Zhang, D. A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]
- Chen, C.-M.; Karapinar, E.; Chen, G.-T. On the Meir-Keeler-Khan set contractions. J. Nonlinear Sci. Appl. 2016, 9, 5271–5280. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-M.; Karapinar, E.; Lin, I.-J. Periodic points of weaker Meir-Keeler contractive mappings on generalized quasi-metric spaces. Abstract Appl. Anal. 2014, 2014, 490450. [Google Scholar]
- Chen, C.-M.; Karapinar, E. Fixed point results for the alpha-Meir-Keeler contraction on partial Hausdorff metric spaces. J. Inequal. Appl. 2013, 2013, 410. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.-H. Survey of measurable selection theorems. SIAM J. Control Optim. 1977, 15, 859–903. [Google Scholar] [CrossRef]
- Du, W.-S. On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. 2012, 159, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S. A random fixed point theorem for a multivalued contraction mapping. Pac. J. Math. 1977, 68, 85–90. [Google Scholar] [CrossRef]
- O’regan, D. Random fixed point theorem with applications. Nonlinear Anal. 1997, 30, 3295–3299. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-Y.; Karapınar, E.; Chen, C.-M. A Discussion on Random Meir-Keeler Contractions. Mathematics 2020, 8, 245. https://doi.org/10.3390/math8020245
Li C-Y, Karapınar E, Chen C-M. A Discussion on Random Meir-Keeler Contractions. Mathematics. 2020; 8(2):245. https://doi.org/10.3390/math8020245
Chicago/Turabian StyleLi, Cheng-Yen, Erdal Karapınar, and Chi-Ming Chen. 2020. "A Discussion on Random Meir-Keeler Contractions" Mathematics 8, no. 2: 245. https://doi.org/10.3390/math8020245
APA StyleLi, C. -Y., Karapınar, E., & Chen, C. -M. (2020). A Discussion on Random Meir-Keeler Contractions. Mathematics, 8(2), 245. https://doi.org/10.3390/math8020245