Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach
Abstract
:1. Introduction
2. The Bohr Radius for the Class
3. The Bohr Radius for the Class
4. The Bohr Radius Problems for the Class
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bohr, H. A theorem concerning power series. Proc. Lond. Math. Soc. 1914, 13, 1–5. [Google Scholar] [CrossRef]
- Paulsen, V.I.; Popescu, G.; Singh, D. On Bohr’s inequality. Proc. Lond. Math. Soc. 2002, 85, 493–512. [Google Scholar] [CrossRef]
- Paulsen, V.I.; Singh, D. Bohr’s inequality for uniform algebras. Proc. Am. Math. Soc. 2004, 132, 3577–3579. [Google Scholar] [CrossRef]
- Paulsen, V.I.; Singh, D. Extensions of Bohr’s inequality. Bull. Lond. Math. Soc. 2006, 38, 991–999. [Google Scholar] [CrossRef]
- Dixon, P.G. Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 1995, 27, 359–362. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Thomae, J. Beiträge zur Theorie der durch die Heinesche Reihe: Darstellbaren Functionen. J. Reine Angew. Math. 1869, 70, 258–281. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Owa, S. Current Topics in Analytic Function Theory; World Scientific Publishing: Hackensack, NJ, USA, 1992. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Baricz, Á.; Swaminathan, A. Mapping properties of basic hypergeometric functions. J. Class. Anal. 2014, 5, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S. Coefficient estimates for some classes of functions associated with q-function theory. Bull. Aust. Math. Soc. 2017, 95, 446–456. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, S.; Khan, S.; Mahmood, T.; Darus, M.; Shareef, Z. Janowski type q-convex and q-close-to-convex functions associated with q-conic domain. Mathematics 2020, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001. [Google Scholar]
- Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis, Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Agrawa, S.; Sahoo, S.K. Geometric properties of basic hypergeometric functions. J. Differ. Equ. Appl. 2014, 20, 1502–1522. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E.; Askey, R.; Roy, R. Special functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983; Volume I. [Google Scholar]
- Agrawa, S.; Mohapatra, M.R. Bohr radius for certain classes of analytic functions. J. Class. Anal. 2018, 12, 109–118. [Google Scholar] [CrossRef]
- Bhowmik, B.; Das, N. Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 2018, 462, 1087–1098. [Google Scholar] [CrossRef]
- Aizenberg, L. Generalization of results about the Bohr radius for power series. Studia Math. 2007, 180, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Altıntaş, O.; Mustafa, N. Coefficient bounds and distortion theorems for the certain analytic functions. Turkish J. Math. 2019, 43, 985–997. [Google Scholar] [CrossRef]
- Goel, R.M.; Sohi, N.S. Multivalent functions with negative coefficients. Indian J. Pure Appl. Math. 1981, 12, 844–853. [Google Scholar]
- Ali, R.M.; Jain, N.K.; Ravichandran, V. Bohr radius for classes of analytic functions. Results Math. 2019, 74, 179. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahuja, O.; Anand, S.; Jain, N.K. Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach. Mathematics 2020, 8, 623. https://doi.org/10.3390/math8040623
Ahuja O, Anand S, Jain NK. Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach. Mathematics. 2020; 8(4):623. https://doi.org/10.3390/math8040623
Chicago/Turabian StyleAhuja, Om, Swati Anand, and Naveen Kumar Jain. 2020. "Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach" Mathematics 8, no. 4: 623. https://doi.org/10.3390/math8040623
APA StyleAhuja, O., Anand, S., & Jain, N. K. (2020). Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach. Mathematics, 8(4), 623. https://doi.org/10.3390/math8040623